

Sentinel C28

User Manual

- C28WE
- C28DP

This page is intentionally blank.

IMPORTANT INFORMATION

Information in this document is subject to change without notice and does not represent a commitment on the part of Cincinnati Test Systems, Inc. No part of the manual and/or software may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or information storage and retrieval systems, for any purpose, other than the purchaser's personal use, without the express permission of Cincinnati Test Systems, Inc.

No patent liability is assumed with respect to the use of the information contained herein. While every precaution has been taken in the preparation of this book, Cincinnati Test Systems, Inc. assumes no responsibility for errors or omissions.

Because of the variety of uses for this equipment and because of the differences between this solid-state equipment and electromechanical equipment, the user of and those responsible for applying this equipment must satisfy themselves as to the acceptability of each application and use of the equipment. In no event will Cincinnati Test Systems be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The illustrations, charts, and layout examples shown in this manual are intended solely to illustrate the text of this manual. Because of the many parameters and requirements associated with any particular installation, Cincinnati Test Systems cannot assume responsibility or liability for actual use based on the illustrative uses and applications.

CAUTION – When you see this warning symbol on the product, refer to the instruction manual for information before proceeding.

CAUTION – To avoid personal injury due to electric shock, disconnect all power services before servicing.

If this instrument is not used according to the instructions of this manual, the protection provided by this equipment design may be compromised.

© 2017 Cincinnati Test Systems

Table of Contents

Chapter 1 – Introduction	
Unpacking1	
Instrument Attachment & Clearance1	
Installation1	
DC Power Connection2	
Supply Connections3	
User Interface Navigation7	
Menu Structure9	
Chapter 2 – Setup	11
Selection of Test Types12	
Test Type Table13	
Tooling Control14	
Programming the Inputs and Outputs14	
Channel Configuration15	
Setting the Units of Measure15	
Setting the Leak Standard Values16	
Program Configuration17	
Pressure Select17	
Setting the Pneumatic Regulator17	
Setting the Test Parameters18	
Verifying Setup18	
Security18	
Backup the Instrument Settings18	
Chapter 3 – Pressure Decay-∆P	19
Timer Parameters20	
Pressure Parameters21	
Test Parameters22	
Chapter 4 – Pressure Decay-∆P/∆T	23
Timer Parameters24	
Pressure Parameters25	
Test Parameters27	
Chapter 5 – Pressure Decay-Leak Std	29
Auto Setup Sequence30	
Timer Parameters32	
Pressure Parameters33	
Test Parameters34	
Program Calibration35	

Initiating the Program Cal Sequence	37	
Performance Factor	37	
Conditions for a Successful Calibration	37	
Calibration Parameters	39	
Chapter 6 – Occlusion		41
Timer Parameters	42	
Pressure Parameters	42	
Test Parameters	43	
Chapter 7 – Pressure Verify		45
Timer Parameters	46	
Pressure Parameters	46	
Test Parameters	46	
Chapter 8 – Differential Pressure (DP) Decay-ΔP		47
How it works	47	
Test Setup	48	
Timer Parameters	49	
Pressure Parameters	50	
Test Parameters	51	
Chapter 9 - Differential Pressure (DP) Decay-Leak Std		53
How it works	53	
Test Setup	54	
Timer Parameters	55	
Pressure Parameters	56	
Test Parameters	57	
Program Calibration	59	
Initiating the Program Cal Sequence	60	
Performance Factor	60	
Conditions for a Successful Calibration	60	
Calibration Parameters	62	
Chapter 10 – Tooling Control		63
Menus		
Chapter 11 – Inputs and Outputs		65
Input and Output Wiring	66	
Input and Output Connector Pinout	66	
Input and Output Table	67	
14 Pin Digital I/O Cable Diagram and Pinout Table	68	
Programmable Inputs and Outputs Menus	69	
Inputs for Program Control	70	
Inputs for Program Selection	73	
Inputs for Program Calibration	73	
Outputs for Test Cycles	74	

Outputs for Program Calibration	74	
Outputs for Program Results and Test Results	75	
Outputs for Tooling Motion	75	
Timing Diagram	76	
Tooling Example	77	
Chapter 12 – EtherNet/IP		79
Instrument EtherNet/IP Functionality	79	
Features	79	
Compatibility	79	
Standard Fixed, Defined Inputs/Outputs	79	
Setting EtherNet/IP User Defined Inputs and Outputs	80	
Additional Reference Document	81	
Establishing EtherNet/IP Communication	82	
Additional Menus		
EtherNet/IP Monitor Screens	83	
EtherNet/IP Inputs and Outputs	84	
Chapter 13 – Communication		85
RS232 Connector Pinout		
Establishing RS232 Communication		
CTS DataHub		
Establishing Ethernet (TCP/IP) Communication via TELNET		
Understanding the Header Information		
Test Results via RS232 or Ethernet (TCP/IP) communication		
Streaming Measured Data		
Parsing Data Packets		
Reports		
Chapter 14 – Security		94
Chapter 15 – Features		
Selecting the Display User Level		
Setting the Date & Time		
Changing the Instrument Language		
Copy & Paste Programs		
Instrument Backup & Restore		
Instrument Cloning		
LED Lights		
Open Internal Leak Standard		
Self-Test		
Update Firmware		
Changing the Functionality of the Prefill Timer		
Pressure Correction		
Autorun		

Batch Calibration	100	
Valve Detection	100	
Setting the Cal Method and Leak Standard Location	101	
Chapter 16 – Instrument Calibration		102
Verifying a Transducer	102	
Calibrating a Transducer	102	
Transducer 1 Cal Menu (Pressure)	102	
Calibrating an Electronic Regulator	103	
Chapter 17 – Monitor Screen Examples		104
Monitor Screen Examples	104	
Chapter 18 – Results Screen Examples		108
Result Data Screens		
Appendix A – Messages & Error Codes		110
Test Messages & Errors		
Appendix B – Quik Test		120
How it works	120	
Test Parameters	121	
Appendix C – Environmental Drift Correction		122
How it works		
Appendix D – Communication Code Tables		124
Data Type Codes or Header Codes	124	
Program Evaluation Codes	124	
Test Evaluation Codes	125	
Segment Codes	128	
Test Data Identifier Codes	131	
Appendix E - Instrument Attachment and Clearance		138
Index		
Sentinel C28 Technical Specifications		142
•		

Chapter 1 – Introduction

This chapter explains the external pneumatic and electrical connections, and introduces the simple menu structure and navigation of the instrument.

Thank you for purchasing the Sentinel C28WETM or C28DPTM precision leak test instrument. The Sentinel C28 is capable of testing using a variety of pre-packaged test algorithms designed to get you testing as quickly and easily as possible. Let's get started!

Unpacking

Carefully remove the instrument from the shipping carton. Locate the AC power cord or the DC cable supplied with the instrument. The test port should have a ColderTM quick connect test port with Self-Test cap. Alternatively, you may install any suitable 1/4" NPTM fitting into the manifold test port. If this is not a standard instrument, see the print packet that shipped with your instrument for the proper thread specifications.

Instrument Attachment & Clearance

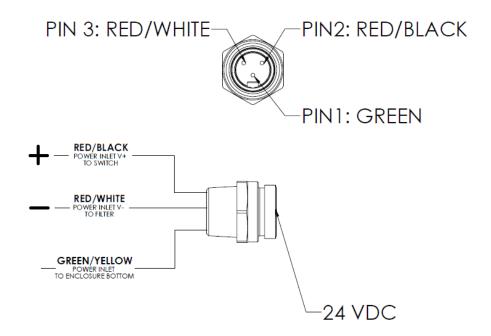
There are four (4) rear mounting holes for $\frac{1}{4}$ inch (6 mm) socket head cap screws, $3\frac{1}{2}$ inches (90 mm) long (for a $\frac{1}{4}$ inch *minimum* mounting plate thickness). The instrument is supplied with four (4) $\frac{1}{4}$ inch $-28 \times 3\frac{1}{2}$ inch socket head cap screws for convenience.

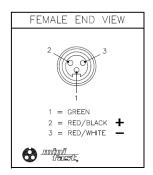
Please allow 4 inch (100 mm) clearance under the instrument for installation of test line and for hand clearance.

Note: These recommendations are also clarified in <u>Appendix E</u> with detailed hole to hole dimensions in detailed "full scale" reference to the clearance dimension.

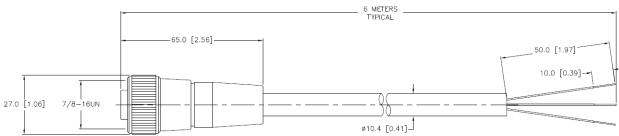
Installation

The leak test instrument is a modular, flexible instrument designed to operate in a manufacturing, clean room, or lab environment. To operate trouble-free, it requires:


- Clean, dry instrument air for test and pilot air (recommend 0.3 and 5.0-micron coalescing filter)
 - ISO 8573-1, Class 2 filters are recommended, with class 3 being acceptable.
- Vacuum for vacuum test applications
- Supply power: 24 VDC or 100-240 VAC 50/60 Hz auto sensing/switching electrical (based on configuration)


Because this is a precision instrument, it is preferable to locate this instrument at least 15 feet (5 meters) away from high electromagnetic energy devices (induction heat treat equipment and welders) whenever possible. In addition, plants having poor quality electrical power or ground systems should consider using isolation transformers on the power drops.

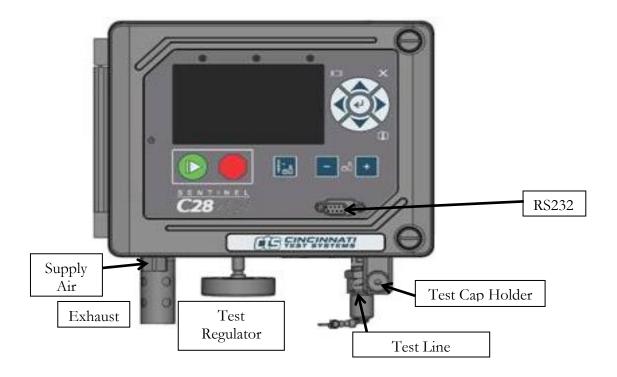
Note: When supplying power, always be certain that there is nearly zero voltage (< 1 V) difference between the neutral and earth ground wires connected to the instrument.


8/23/2018 1 www.cincinnati-test.com

DC Power Connection

SPECIFICATIONS		
CONTACT CARRIER MATERIAL/COLOR	TPU/YELLOW	
MOLDED HEAD MATERIAL/COLOR	TPU/YELLOW	
CONTACT MATERIAL/PLATING	BRASS/GOLD	
COUPLING NUT MATERIAL/FINISH	BRASS/NICKEL	
RATED CURRENT [A]	9.0 A	
RATED VOLTAGE [V]	600 V	
OUTER JACKET MATERIAL/COLOR	PVC/YELLOW	
CONDUCTOR INSULATION MATERIAL	PVC	
NUMBER OF CONDUCTORS [AWG]	3x16 AWG	
TEMPERATURE RANGE	-40°C to +105°C (-40°F to +221°F)	
PROTECTION CLASS	MEETS NEMA 1,3,4,6P AND IEC IP67	

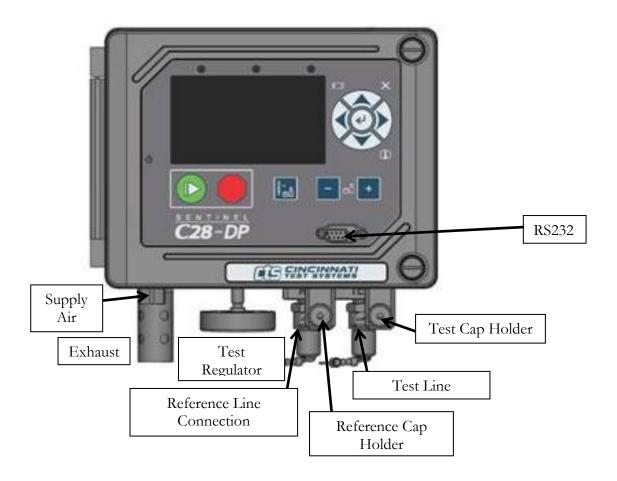
CTS Part Number: CABLE, TURCK, RKM35D-6M


8/23/2018 2 www.cincinnati-test.com

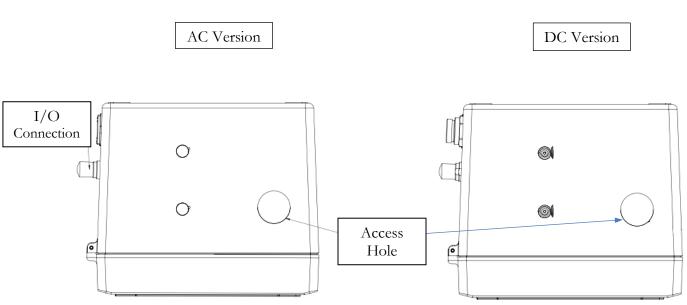
Supply Connections

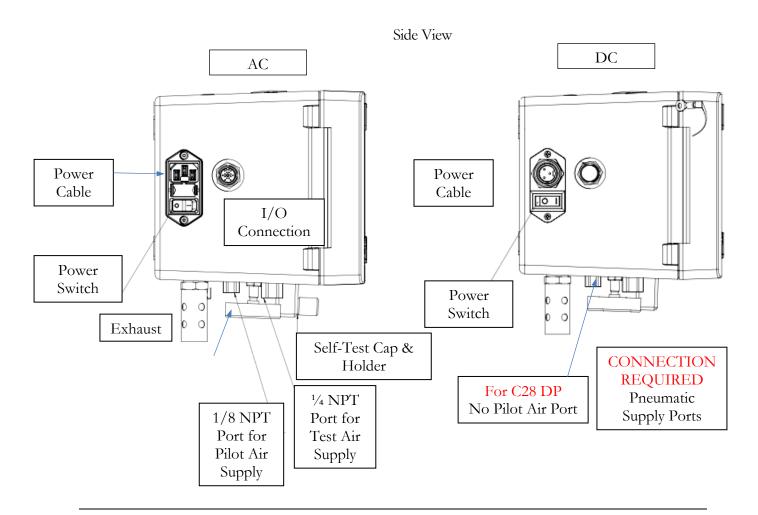
After mounting or locating the instrument, connect the inlet air or vacuum supply to the inlet port shown in the pneumatic diagram supplied with your specific instrument, as this will vary depending on instrument configuration. To reduce future maintenance requirements, install the recommended 0.3 and 5.0-micron coalescing filters in the air supply connected to the instrument. Be certain to replace the filter elements at least quarterly as preventive maintenance. ISO 8573-1, Class 2 filters are recommended, with class 3 being acceptable.

	Connection	
Port	Туре	Pressure Rating
Test Supply	1/4" FNPT	Vacuum-0 OR 0-250 psi
Pilot (C28 WE)	1/8" FNPT	0-90 psi

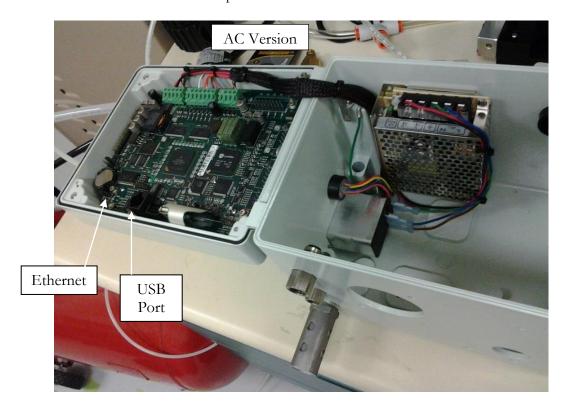

C28WE Front View

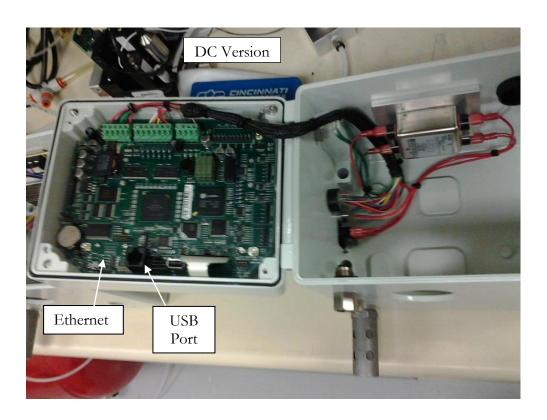
8/23/2018 3 www.cincinnati-test.com


Compared to the C28WE on the previous page, the C28DP has an additional set of fittings under the instrument for connection to a reference volume.


C28DP Front View

8/23/2018 4 www.cincinnati-test.com


Top View



8/23/2018 5 www.cincinnati-test.com

Open Door View

User Interface Navigation

There are multiple monitoring screens available for the instrument. Selecting the Monitor icon will give you access to all of these screens. This menu is also where the user selects to view the graphs available with the unit.

The instrument is designed with a simple graphical icon-based interface. The Main Menu is activated by pressing the Main Menu button.

The Arrow/Enter Selection buttons are used to navigate through the icons on the screen and select the appropriate menus. The center arrow is the Enter button. It is used to select parameters for editing and saving the edits once they are complete.

The Cancel/Back button is used go back to the previous menu. Multiple presses will eventually exit you out of the menu structure entirely and place you on the Monitor Screen. This button is also used to cancel out of any edits before saving.

The Information button is used to get a help screen that is associated with the parameter corresponding to where the cursor is located.

The USB button is a shortcut directly to the USB menu.

The USB menu is located in **Main Menu > Global Config > USB** icon.

Note: When a USB memory stick mounted in the USB port, holding this button down until it beeps will take a screen shot of the screen and save it to the USB memory stick. Do not remove the USB memory stick until the instrument tells you it is finished writing the image.

8/23/2018 7 www.cincinnati-test.com

The instrument is capable of storing up to 99 different programs. Switching between these programs is done with the Program Select Buttons on the front of the instrument. The current program is shown in the lower right hand corner of the screen designated by "P" and then a two-digit number corresponding to the current program number.

Hint: Press the "+" button for 2 seconds to prompt a screen to display in where the value of a program may be selected using the arrow buttons. The up and down arrows will increment and decrement the ones digit. The right and left arrows will increment and decrement the tens digit.

Note: The Program may also be changed using Digital I/O (see Chapter 11), using EtherNet/IPTM (see Chapter 12), or using RS232 or TCP/IP Communication methods (see Chapter 13).

8/23/2018 8 www.cincinnati-test.com

Menu Structure

Below is an overview of the menu structure for the instrument.

Note: Not all menus are available for all hardware configurations and Test Types.

	Note 1		Note 2	Main Menu			
	Monitor Screens	Global Config	Result Data	Program Cal	Program Config	Auto Setup	Channel Config
	Monitor 1	RS232 1	Counters		Test Type		Hardware
	Monitor 2	Network	Results		Timers		Self-Test
	HW Inputs	Telnet 1	Stats		Pressures		Set Span
	HW Outputs	Email			Test (TST)		Units
	IP Inputs	USB			Cal (TST)		Leak/Cal
	IP Outputs	Email			Misc		Misc
		Misc			Autorun		
		Version			HW Inputs		
		Security			HW Outputs		
		Note 3			IP Inputs		
Notes:	See <u>Chapter 17</u>				IP Outputs		
2.	See <u>Chapter 18</u> Viewing Security	enabled in	Modes	_	Tooling		
	the Misc menu a		Basic				
			Advanced Admin				

8/23/2018 9 www.cincinnati-test.com

This page is intentionally blank.

8/23/2018 10 www.cincinnati-test.com

Chapter 2 – Setup

In this chapter, you are asked how you plan to use the instrument to conduct the test or sequence of tests for the intended application. Based on the answers, you will be directed to modify certain instrument settings.

Setting up the instrument to meet specific application requirements is most effectively accomplished by answering a few questions. These questions will guide you through the initial stages of the setup and point you to the appropriate chapters that detail specific instructions based on the answers.

It is highly recommended that each type of part being tested, whether they differ in volume or construction, have their own set of parameters defined in the instrument using individual Programs. Pressure decay leak testing is a volume dependent function. In certain cases, it is possible to group similar parts together to use the same parameters. In this case we recommend you talk to a CTS applications specialist to assure proper functionality.

8/23/2018 11 www.cincinnati-test.com

Selection of Test Types

The first step in setting up the instrument is to select the type of test you want to conduct from the pre-packaged test sequences. Repeating this step under a different program number will enable you to configure up to 99 different test configurations. The **Test Type Table** on the following page includes the different test types available in the instrument, a brief description, and the associated chapter that details the pre-packaged test program. The availability of these test types is based on the hardware configuration of the instrument.

Once you determine which test type is appropriate for your application go to Program 1 (press the + or – buttons until you see a P01 in the lower right hand corner of the screen.

Press the Main Menu button to view the icons in the Main Menu screen.

Select Program Config icon using the Arrow/Enter Selection buttons.

Select the Test type icon using the Arrow/Enter Selection buttons.

Select the appropriate test type using the Enter button to enable editing and then the up and down arrows to view the options. When you see the desired selection press the Enter button to select.

To simplify the instructions in this manual, the steps above are reduced to something similar to the following: The **Test Type** menu is located in **Main Menu > Program Config > Tst type** icon.

8/23/2018 12 www.cincinnati-test.com

SENTINEL C28 CHAPTER 2 - SETUP

Test Type Table

Test Type	Description
Pressure Decay-ΔP <u>Chapter 3</u>	Measures the Pressure Loss (ΔP) over a fixed time. Determined from the pressure loss over the duration of the test timer. The result is presented in units of delta pressure.
Pressure Decay-ΔΡ/ΔΤ <u>Chapter 4</u>	Measures the Pressure Loss ($\Delta P/\Delta T$) over unit time. Determined from the pressure loss over the duration of the test timer divided by the test time. The result is presented in units of delta pressure over delta time.
Pressure Decay-Leak Std <u>Chapter 5</u>	Calculates the Leak Rate, based on pressure loss. Determined from the pressure loss over the duration of the test timer relating to the pressure loss of the leak standard and of the non-leaking master part. The result is presented in units of flow.
Occlusion Chapter 6	Measures the Back Pressure (part blockage). Determined from the pressure at the end of the test timer. The result is presented in units of pressure.
Pressure Verify <u>Chapter 7</u>	Measures the Pressure at the isolated test port (no fill). Determined from the pressure at the end of the Test segment timer. The result is presented in units of pressure.
Diff Pressure (DP)-ΔP <u>Chapter 8</u>	Measures the Differential Pressure Loss (ΔP) between the test part and the reference volume over a fixed time. Determined from the pressure loss over the duration of the test timer. The result is presented in units of delta pressure.
Diff Pressure (DP)-Leak Std <u>Chapter 9</u>	Calculates the Leak Rate determined from the differential loss between the test part and the reference volume over time relating to the pressure loss of the leak standard and of the non-leaking master part. The result is presented in units of flow.

Before we begin setting the parameters of the program we need to determine some of the capabilities and features required for the application.

8/23/2018 13 www.cincinnati-test.com

Tooling Control

The instrument is capable of controlling tooling to possibly eliminate the need for a PLC or other computer that would control cylinders and sealing.

Question:

Are you planning to use the Sentinel C28 to control any sealing operations?

Yes: It is important that you understand the concepts and safety requirements of Tooling Control. See Chapter 10 and then come back and continue the setup.

No: Proceed.

Programming the Inputs and Outputs

The instrument comes with 12 inputs and 12 outputs (24VDC) that are user configurable for each program.

Question:

Are you planning to use the Sentinel C28 to control any ancillary devices using discrete I/O or EtherNet/IP $^{\text{TM}}$, or communicate with a PLC?

Yes: See <u>Chapter 11</u> - Inputs and Outputs, <u>Chapter 12</u> - EtherNet/IP, or <u>Chapter 13</u> - Communication, and then come back and continue the setup.

No: Proceed.

8/23/2018 14 www.cincinnati-test.com

Channel Configuration

Setting the Units of Measure

The instrument has the capability to utilize different units of measure for each configured program. In order to keep things simple and user friendly if you always use the same units of measure, you can set the units in one place and have them apply instrument wide. This is done in the Channel Configuration menu.

Question:

Are you planning to use the same units of measure for every program?

Yes: Press the Main Menu button, select the Channel Config icon, then select the Units icon. Change the Unit/Prec Define parameter to "Channel". Set the desired units of measure on that same screen. These units will apply to every program.

No: Press the Main Menu button, select the Channel Config icon, then select the Units icon. Change the Unit/Prec Define parameter to "Program". The Units icon will now appear under the Program Config menu. When a program is created, the units for the program will use the units under the Channel Config menu as the default settings but the units can now be changed per program.

Note: The units set on the Channel Config screen are also the units used for Self-Test, Auto Setup and transducer Set/Span routines. r

Note: The precision displayed for each unit may also be set on this screen.

8/23/2018 15 www.cincinnati-test.com

Setting the Leak Standard Values

The instrument has the capability to utilize different leak standards for each configured program that uses a leak standard. In order to keep things simple and user friendly if you always use the same leak standard, you can set the leak standard value and pressure in one place and have it apply instrument wide to any program that uses a leak standard. This is done in the Channel Configuration menu.

Question:

Are you planning to use the same leak standard for every program that requires a leak standard?

Yes: Press the Main Menu button, select the Channel Config icon, then select the Leak/Cal icon. Change the Leak Std/Cal Define parameter to "Channel". Set the leak standard value and the pressure at which it was calibrated on that same screen. This leak standard value will apply to every program that utilizes a leak standard for calibration.

No: Press the Main Menu button. Select the Channel Config icon. From the Channel Config menu select the Leak/Cal icon. Change the Leak Std/Cal Define parameter to "Program". The leak standard parameters will now appear on the TST:*** screen under the Program Config menu. When a program is created, the units for the program will use the leak standard value under the Channel Config menu as the default settings but now can be changed per program.

Note: Every time the leak standard value changes due to a calibration or when a new leak standard is used this value needs to be modified to reflect the new value.

Note: The parameter that determines where the physical leak standard is located (either inside the instrument or connected to a port on the outside) is also located in the Leak/Cal menu or the TST menu. However, to view this parameter you must be in the Display User Level. To change the Display User Level, see Chapter 15 – Features.

Remember: Press the information button with the cursor on that parameter if you want to know the definition of the options.

8/23/2018 16 www.cincinnati-test.com

Program Configuration

Now that you have created a program, configured the tooling and associated I/O, and set the channel level parameters, it is time to set the regulators to the correct test pressure.

Pressure Select

To select the proper source for the test, we need to inform the instrument which regulator to use for this program. This is located in **Main Menu > Program Config > Misc** icon. The parameter called Pressure Select will need to be set to match the proper source. Find the regulator with the proper range. Locate the label that has the Source Number on it and select that source for the Pressure Select parameter. There are many possible options for this setting, depending on the hardware configuration. Options may include Pressure, Vacuum, Venturi, Tank, Reference, or Internal Leak Std. Instruments with only one pressure source will not allow editing of the Pressure Source parameter.

Setting the Pneumatic Regulator

Question:

Does the pressure source you are using for this program have an electronic regulator?

Yes: The electronic regulator has been setup and calibrated at the factory and is ready to use. For calibrating the electronic regulator, see Chapter 16 – Instrument Calibration.

No: Setting a mechanical pressure regulator is done in the Channel Config screen under the Set/Span menu. In order to set the regulator, the test port will need to be blocked which will allow the instrument to hold pressure. Standard units are supplied with a Colder[™] quick connect fitting with an attached Self-Test cap. If this instrument is not a standard setup this may be done with a plug put in the test port. For proper plug thread specifications, consult the print set shipped with your instrument.

8/23/2018 17 www.cincinnati-test.com

Setting the Test Parameters

It is time to set the test parameters to fit your application. Refer to the chapter that is associated with the test type chosen from <u>Test Type Table</u> earlier in this chapter.

Verifying Setup

Once you have everything programmed, run a repeatability study based on your company's quality standards to assure you are getting the results you desire.

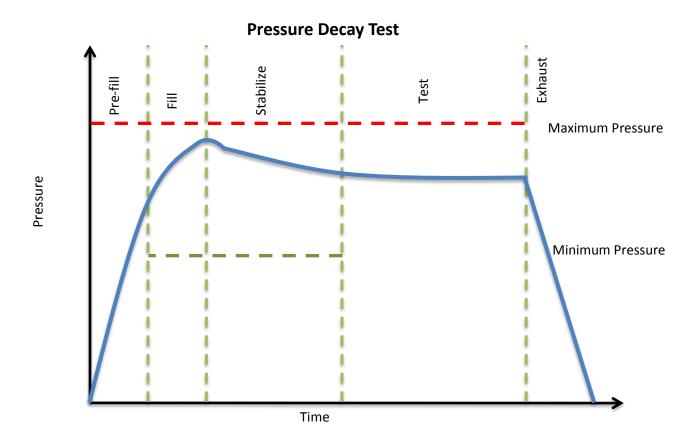
Security

Now that the instrument is setup the way you want, make sure to lock down the parameters that you don't want changed until a key or password is used. See <u>Chapter 14</u> – Security.

Backup the Instrument Settings

The setup of the instrument for one program is completed. You may now go back and setup multiple programs. Once you have completed, it is highly recommended that you save a backup of the instrument on a (FAT32) USB memory stick. For Instrument Backup and Restore see Chapter 15 – Features.

8/23/2018 18 www.cincinnati-test.com


Chapter 3 – Pressure Decay-△P

This chapter explains the theory and parameters for conducting a pressure decay test measuring a pressure loss over time. The result of this test is the pressure loss (or gain for a vacuum test) measured over a fixed period of time, presented in units of pressure.

The basic principle of operation of a pressure decay leak test instrument is to fill the test part to a specified target test pressure, isolate the test part from the pressure or vacuum source, allow the pressure to stabilize, and then measure the pressure loss due to a leak over a defined time.

The Charts below give an overview of the parameters used to set up a Pressure Decay- ΔP Test. The Tables that follow give detailed descriptions of each parameter and also document the Display User Level associated with each parameter.

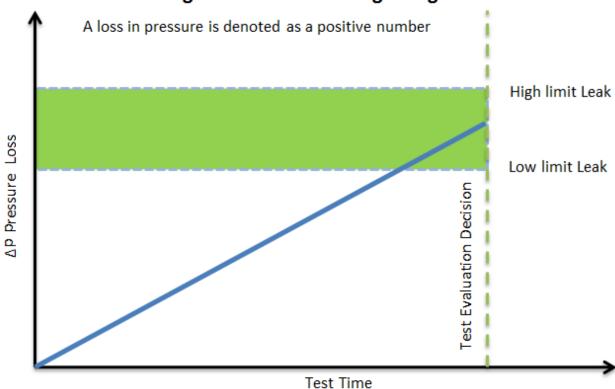
Note: To change the Display User Level, see Chapter 15 – Features.

8/23/2018 19 www.cincinnati-test.com

Timer Parameters

The Timers menu is located in the Main Menu > Program Config > Timers icon.

Timer	Description	Display User Level
Tooling Extend	When tooling control is specified, there can be up to five extend timers for up to five tooling motions. This is a not to exceed timer when feedback is being utilized.	Advanced, Admin
Prefill	Checks for excessively leaking parts or lack of pressure. May be set to "Percent of Fill Time" (default), for fixed fill time tests, or set to "Not to Exceed Time". For Changing the Functionality of the Prefill Timer, see Chapter 15 – Features. Maximum time to reach the minimum pressure. If the variable is set to "Not to Exceed Time", this segment will exit to the next once the Minimum Pressure value is reached.	Advanced, Admin
Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.	Basic Advanced, Admin
Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.	Basic Advanced, Admin
Test	The precise time over which to measure pressure drop or decay or the precise end time to measure pressure rise.	Basic Advanced, Admin
Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	Basic Advanced, Admin
Tooling Retract	When tooling control is specified, there can be up to five retract timers for up to five tooling motions. This is a not to exceed timer when feedback is being utilized.	Advanced, Admin
Part Mark	This is used as the duration for an external part marking device, and is a not to exceed timer when feedback is being utilized.	Advanced, Admin


8/23/2018 20 www.cincinnati-test.com

Pressure Parameters

The Pressure menu is located in the Main Menu > Program Config > Pressure icon.

Pressure	Description	Display User Level
Minimum Pressure	The value that must be reached before the Prefill set point is reached and must be maintained through fill and stabilization segments or the testing cycle will end as a Severe Leak.	Basic Advanced, Admin
Target Pressure	The specified test pressure for the part. For vacuum test pressures enter a positive value if psiv was selected as the pressure unit, or enter a negative value if psig was selected as the pressure unit. ((For example, the test pressure 9.7 psia would be entered as 5 psiv or -5 psig.) Pressure loss is corrected based on the actual pressure and the Target Pressure.	Basic Advanced, Admin
Maximum Pressure	The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle will end as an Over Pressure Malfunction.	Basic Advanced, Admin

Pressure value gets zeroed at the beginning of test timer

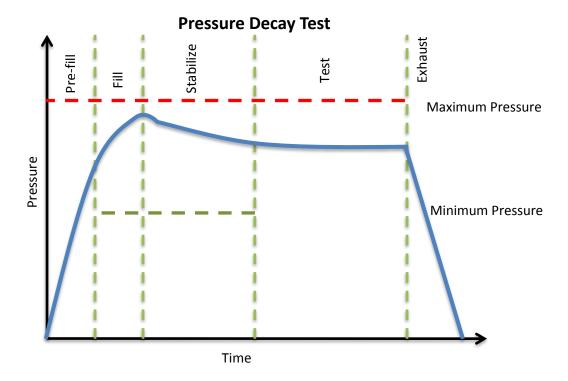
8/23/2018 21 www.cincinnati-test.com

Test Parameters

The Test parameters menu is located in the Main Menu > Program Config > TST:PLO icon.

TST Parameter	Description	Display User Level
Low Limit Loss	Lower set point value used to evaluate test results.	Basic Advanced, Admin
High Limit Loss	Upper set point value used to evaluate test results.	Basic Advanced, Admin
Test Evaluation	Test results are compared to two set points for pass or fail status. There are three areas for evaluation of results: above high limit, between limits, and below low limit. See Table below for codes.	Advanced, Admin
EDC Enable	Activates Environmental Drift Correction. See Appendix C.	Advanced, Admin
EDC Percentage	See Appendix C.	Advanced, Admin
EDC Quantity	See Appendix C.	Advanced, Admin

8/23/2018 22 www.cincinnati-test.com


Chapter 4 – Pressure Decay-\(\Delta P / \Delta T \)

This chapter explains the theory and parameters for conducting a pressure decay test measuring the rate of change of pressure loss / time. The result of this test is the rate of pressure change measured over a selected unit of time.

The basic principle of operation of a pressure decay leak test instrument is to fill the test part to a specified target test pressure, isolate the test part from the source air and allow the pressure to stabilize, and then measure the pressure loss due to a leak over a defined time.

The Charts below give an overview of the parameters used to set up a Pressure Decay- $\Delta P/\Delta T$ Test. The Tables that follow give detailed descriptions of each parameter and also document the Display User Level associated with each parameter.

Note: To change the Display User Level, see Chapter 15 – Features.

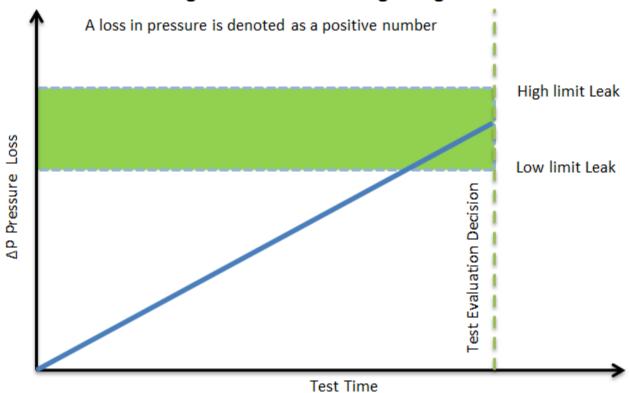
8/23/2018 23 www.cincinnati-test.com

Timer Parameters

The Timers menu is located in the Main Menu > Program Config > Timers icon.

Timer	Description	Display User Level
Tooling Extend	When tooling control is specified, there can be up to five extend timers for up to five tooling motions. This is a not to exceed timer when feedback is being utilized.	Advanced, Admin
Prefill	Checks for excessively leaking parts or lack of pressure. May be set to "Percent of Fill Time" (default), for fixed fill time tests, or set to "Not to Exceed Time. For Changing the Functionality of the Prefill Timer, see Chapter 15 – Features. Maximum time to reach the minimum pressure. If the variable is set to "Not to Exceed Time", this segment will exit to the next once the Minimum Pressure value is reached.	Advanced, Admin
Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.	Basic Advanced, Admin
Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.	Basic Advanced, Admin
Test	The precise time over which to measure pressure drop or decay or the precise end time to measure pressure rise.	Basic Advanced, Admin
Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	Basic Advanced, Admin
Tooling Retract	When tooling control is specified, there can be up to five retract timers for up to five tooling motions. This is a not to exceed timer when feedback is being utilized.	Advanced, Admin

8/23/2018 24 www.cincinnati-test.com


Pressure Parameters

The Pressure menu is located in the Main Menu > Program Config > Pressure icon.

Pressure	Description	Display User Level
Minimum Pressure	The value that must be reached before the Prefill set point is reached and must be maintained through fill and stabilization segments or the testing cycle will end as a Severe Leak.	Basic Advanced, Admin
Target Pressure	The specified test pressure for the part. For vacuum test pressures enter a positive value if psiv was selected as the pressure unit, or enter a negative value if psig was selected as the pressure unit. ((For example, the test pressure 9.7 psia would be entered as 5 psiv or -5 psig.) Pressure loss is corrected based on the actual pressure and the Target Pressure.	Basic Advanced, Admin
Maximum Pressure	The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle will end as an Over Pressure Malfunction.	Basic Advanced, Admin

8/23/2018 25 www.cincinnati-test.com

Pressure value gets zeroed at the beginning of test timer

8/23/2018 26 www.cincinnati-test.com

Test Parameters

The Test parameters menu is located in the Main Menu > Program Config > TST:DPT icon.

TST Parameter	Description	Display User Level
Low Limit Loss	Lower set point value used to evaluate test results.	Basic Advanced, Admin
High Limit Loss	Upper set point value used to evaluate test results.	Basic Advanced, Admin
Test Evaluation	Test results are compared to two set points for pass or fail status. There are three areas for evaluation of results: above high limit, between limits, and below low limit. See Table below for codes.	Advanced, Admin
EDC Enable	Activates Environmental Drift Correction. See Appendix C.	Advanced, Admin
EDC Percentage	See Appendix C.	Advanced, Admin
EDC Quantity	See Appendix C.	Advanced, Admin

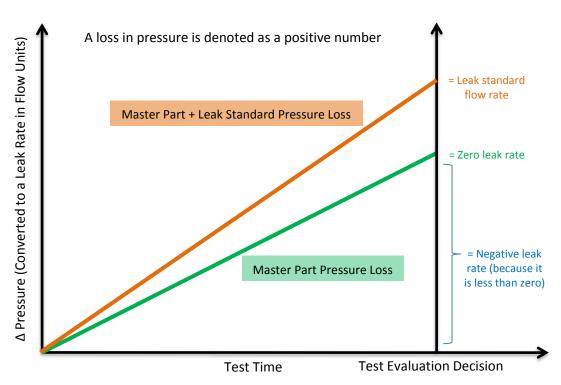
8/23/2018 27 www.cincinnati-test.com

This page is intentionally blank.

8/23/2018 28 www.cincinnati-test.com

Chapter 5 – Pressure Decay-Leak Std

This chapter explains the theory and parameters for conducting a pressure decay test and correlating the pressure loss to a leak rate using a leak standard. This test requires a two cycle calibration routine to correlate the pressure loss to a flow rate. The result of this test is presented in units of flow.


This test type utilizes a two-point calibration sequence with a non-leaking master part to record the zero leak pressure loss value and the additional pressure loss value due to the flow rate of the leak standard on the second calibration cycle.

The basic principle of operation of a pressure decay leak test instrument is to fill the test part to a specified target test pressure, isolate the test part from the source air and allow the pressure to stabilize, and then measure the pressure loss due to a leak over a defined time. The leak test instrument translates the pressure loss value measured over the fixed test time to a leak or flow rate.

The charts in this chapter give an overview of the parameters used to set up a Pressure Decay Test and correlate the results to a flow rate using a leak standard. The Tables that follow give detailed descriptions of each parameter and also document the Display User Level associated with each parameter.

Note: To change the Display User Level, see Chapter 15 – Features.

Pressure value gets zeroed at the beginning of test timer

8/23/2018 29 www.cincinnati-test.com

Auto Setup Sequence

The easiest way to setup the proper timers in the instrument, when using the leak rate test type, is by using the Auto Setup routine. The Auto Setup routine resets the Input and Output functions for a program to the default (inactive) values. Therefore, Auto Setup must be performed with the part manually sealed. After completing the Auto Setup routine, the inputs, outputs, and tooling functions for the program will need to be reconfigured.

Note: If you want to set up the program parameters manually or don't want to have to reconfigure the inputs and outputs after running Auto Setup, then proceed to Timer Parameters

The Auto Setup routine is a unique patented process developed by Cincinnati Test Systems for the Sentinel C28 instrument that makes the initial setup of the instrument to a new test part quick, easy and efficient. The process will determine the best time sequence to test a part within the limits of a desired maximum cycle time. If the desired maximum cycle time is set too short, the final test will not produce repeatable results. Any leak test needs a certain amount of cycle time to achieve sufficient resolution and repeatability that are dependent on the part volume, leak rate, test pressure, and part characteristics. The Auto Setup routine will set the best possible test cycle within the maximum cycle time specified for the test.

Parameter	Description	Display User Level
Test Type	Set this to Pressure Decay-Leak Std.	Basic Advanced, Admin
Apply to Program #	Defines the program in which the parameters will be written. This process will overwrite the current parameters within the defined program.	Basic Advanced, Admin
Desired Cycle Time	This is the total desired time to complete the test on the part excluding tooling motions. The Auto Setup sequence will determine the best possible sequence of testing within this maximum cycle time. This optimized setup cannot produce acceptable resolution and repeatability if the total time is too short for the part volume, leak rate, test pressure, and part construction. Utilize all the available time in the manufacturing process to conduct this test. When acceptable results are achieved, you may be able to repeat the process and reduce the total cycle time.	Basic Advanced, Admin
Target Pressure	This is the specified test pressure for the part. Auto Setup will preset the Minimum Pressure at 80% and Maximum Pressure at 120%.	Basic Advanced, Admin
Pressure Select	Set to the same pressure source as you did in Chapter 2 - Pressure Select.	Basic Advanced, Admin

8/23/2018 30 www.cincinnati-test.com

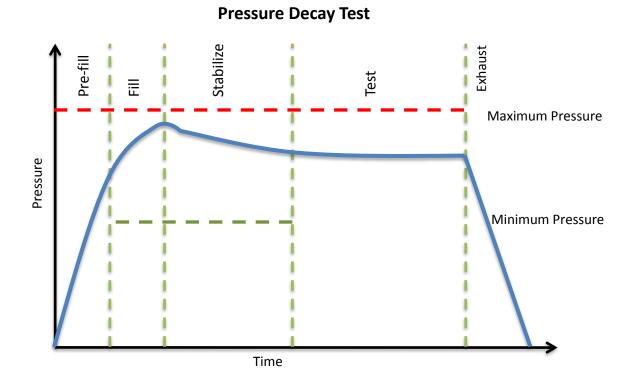
Parameter	Description	Display User Level
High Limit Leak	This is the specified leak rate for the part. Auto Setup will preset the Low Limit Leak at –20% of the High Limit Leak. It will also set the Test Evaluation to FPF. FPF means "Fail over Hi Limit, Pass between Hi and Lo Limit and Fail if under Lo Limit". These values and settings can be changed after completing the Auto Setup sequence.	Basic Advanced, Admin
Leak Std Value	This is the leak rate value on the calibrated leak standard mounted either internal to the instrument on the pneumatic manifold or using an external leak standard.	Basic Advanced, Admin
Leak Std Pressure	This is the pressure value on the calibrated leak standard.	Basic Advanced, Admin
Cal Method	This defines whether one or two parts are used in the calibration procedure. It also specifies if the Leak Standard is located internally on the pneumatic manifold where the Calibration Valve will automatically activate in the calibration procedure or located externally where it will be added to the process by the operator or system control.	Basic Advanced, Admin
Start Auto Setup	This starts the Auto Setup procedure.	Basic Advanced, Admin

Upon successful completion of the Auto Setup routine there is no need to continue the setup parameters in the rest of this chapter unless you want to adjust parameters.

8/23/2018 31 www.cincinnati-test.com

Timer Parameters

The Timers menu is located in the Main Menu > Program Config > Timers icon.


Timer	Description	Display User Level
Tooling Extend	When tooling control is specified, there can be up to five extend timers for up to five tooling motions. This is a not to exceed timer when feedback is being utilized.	Advanced, Admin
Prefill	Checks for excessively leaking parts or lack of pressure. May be set to "Percent of Fill Time" (default), for fixed fill time tests, or set to "Not to Exceed Time". For Changing the Functionality of the Prefill Timer, see Chapter 15 – Features. Maximum time to reach the minimum pressure. If the variable is set to "Not to Exceed Time", this segment will exit to the next once the Minimum Pressure value is reached.	Advanced, Admin
Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.	Basic Advanced, Admin
Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.	Basic Advanced, Admin
Test	The precise time over which to measure pressure drop or decay or the precise end time to measure pressure rise.	Basic Advanced, Admin
Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	Basic Advanced, Admin
Tooling Retract	When tooling control is specified, there can be up to five retract timers for up to five tooling motions. This is a not to exceed timer when feedback is being utilized.	Basic Advanced, Admin
Relax	Timer used during Program Cal routine as a delay between calibration cycles to allow the master part to recover to repeatable virgin state. (Too short relax times result in decreasing pressure losses/flow results in successive tests.)	Basic Advanced, Admin

8/23/2018 32 www.cincinnati-test.com

Pressure Parameters

The Pressure menu is located in the Main Menu > Program Config > Pressure icon.

Pressure	Description	Display User Level
Minimum Pressure	The value that must be reached before the Prefill set point is reached and must be maintained through fill and stabilization segments or the testing cycle will end as a Severe Leak.	Basic Advanced, Admin
Target Pressure	The specified test pressure for the part. For vacuum test pressures enter a positive value if psiv was selected as the pressure unit, or enter a negative value if psig was selected as the pressure unit. (For example, the test pressure 9.7 psia would be entered as 5 psiv or -5 psig.) Pressure loss is corrected based on the actual pressure and the Target Pressure.	Basic Advanced, Admin
Maximum Pressure	The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle will end as an Over Pressure Malfunction.	Basic Advanced, Admin

8/23/2018 33 www.cincinnati-test.com

Test Parameters

The Test parameters menu is located in the Main Menu > Program Config > TST:PLR icon.

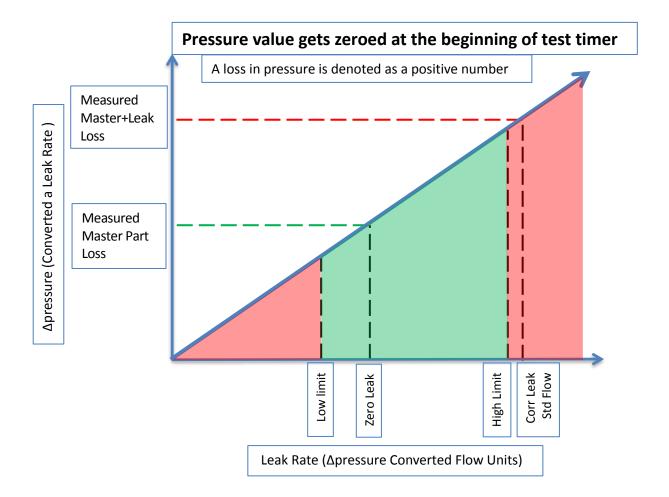
TST Parameter	Description	Display User Level
Low Limit Rate	Lower set point value used to evaluate test results.	Basic Advanced, Admin
High Limit Rate	Upper set point value used to evaluate test results.	Basic Advanced, Admin
Test Evaluation	Test results are compared to two set points for pass or fail status. There are three areas for evaluation of results: above high limit, between limits, and below low limit. See Table below for codes.	Advanced, Admin
Min Master Loss	Minimum pressure loss allowed during the first test in the Program Cal routine. Prevents the acceptance of a calibration of a blocked part or test line.	Basic Advanced, Admin
Max Master Loss	Maximum pressure loss allowed during the first test in the Program Cal routine. Prevents the acceptance of a calibration with a leaking part or fixture leaks.	Basic Advanced, Admin
Min Mstr+Leak Loss	Minimum pressure loss allowed during the second test in the Program Cal routine. Prevents the acceptance of a calibration with a blocked part or test line.	Basic Advanced, Admin
Max Mstr+Leak Loss	Maximum pressure loss allowed during the second test in the Program Cal routine. Prevents the acceptance of a calibration with excessive pressure loss due to part or fixture leaks. Set slightly higher than max loss during Program Cal.	Basic Advanced, Admin
Min Leak Loss	Minimum pressure loss allowed that represents the pressure loss due to the Leak Standard used to calibrate the instrument.	Basic Advanced, Admin
Max Leak Loss	Maximum pressure loss allowed that represents the pressure loss due to the Leak Standard used to calibrate the instrument.	Basic Advanced, Admin

8/23/2018 34 www.cincinnati-test.com

Min Perform Factor	Minimum value for Performance Factor calculated at the completion of the Program Cal routine . Resultant evaluation of ratio of Master Part Loss to Master+Leak Loss, Test Pressure, and loss due to Leak Std.	Basic Advanced, Admin
Leak Std Cal Flow	Certified flow value of Leak Standard used to calibrate instrument. This parameter is only viewable in this location if the Leak Std/Cal Define parameter is set to "Program".	Basic Advanced, Admin
Leak Std Cal Press	Certified pressure at which Leak Standard Flow was calibrated. This parameter is only viewable in this location if the Leak Std/Cal Define parameter is set to "Program".	Basic Advanced, Admin
Quik Test Enable	Activates Quik Test. See Appendix B.	Advanced, Admin
Quik Test Timer	Options include 10%, 25%, 50%, 75%, or 90% See <u>Appendix B</u> .	Advanced, Admin
Quik Test LL Band	See Appendix B.	Advanced, Admin
Quik Test HL Band	See Appendix B.	Advanced, Admin
EDC Enable	Activates Environmental Drift Correction. See <u>Appendix C</u> .	Advanced, Admin
EDC Percentage	See Appendix C.	Advanced, Admin
EDC Quantity	See Appendix C.	Advanced, Admin

Program Calibration

In order to convert the pressure loss measured by the instrument to a leak (flow) rate, the instrument uses a leak standard and needs to run the "Program Cal" routine". This procedure requires at least one known non-leaking part referred to as a "master part". This procedure tests a non-leaking master part connected to the instrument using the timers and pressures established for the program. The procedure automatically tests the non-leaking master part twice with the Relax timer delay between tests. Within each program that uses a leak standard, Program Cal can be configured to use one of four methods. See **Setting the Cal Method and Leak Standard Location** in <u>Chapter 15</u> – Features.


Remember: The Leak/Cal menu has a parameter called Leak Std/Cal Define that determines the location for the leak standard settings.

When set to "Channel", leak standard settings are located in the Channel Config menu.

When set to "Program", leak standard settings are located in the Program menu.

Determine how you plan to use your leak test instrument. Review Setting the Leak Standard Values section on page 16. It is critical to make sure the leak standard values are set correctly for proper use. To view the Cal Method parameter, you must be in the Advanced or Admin Display User Level. To change the Display User Level, see Chapter 15 – Features.

8/23/2018 35 www.cincinnati-test.com

8/23/2018 36 www.cincinnati-test.com

Initiating the Program Cal Sequence

To initiate a Program Cal routine, go to **Main Menu > Program Cal** icon, select **OK** and press **Enter**. The Program Cal wizard will tell you to connect a non-leaking master part. Connect the non-leaking master part to the instrument. Push the Start button to initiate the Program Cal routine. The system will conduct an initial test of the non-leaking master part to measure the pressure loss associated with a non-leaking part. This represents the typical offset associated with testing parts within the environment of the test system. The pressure loss value is saved as the Master Part Loss. The system will conduct a second test on a non-leaking master part with a known calibrated leak standard included in the test. The pressure loss value result for this test is saved as the Master+Leak Loss.

Performance Factor

Upon the successful completion of the Program Cal routine, the display will show the calculated Performance Factor for the calibration. The Performance Factor is an estimate of the quality of the calibration. It combines the ratio of the Hi Limit Leak result to the non-leaking master part result, the test pressure, and difference between the Hi Lim result and the non-leaking master part result to scale its anticipated performance. This value ranges from 0 to 100. It is generally desirable to have a Performance Factor of 35 to 100. The actual acceptable Performance Factor can vary depending on the desired Gage R&R performance of the test. Here is the Performance Factor equation:

Performance Factor = Cal Ratio x Pressure Loss Penalty x Time Penalty x 100

The pressure loss penalty is greater for smaller pressure loss values. The time penalty is greater for shorter Test cycle timer values. Generally, longer stabilize and test cycle timer settings will produce higher Performance Factors and improved Gage R&R performance.

Note: The instrument will require a Program Cal routine if any parameters that affect the calibration are modified.

Conditions for a Successful Calibration

Several conditions must be met during the Program Calibration routine for the instrument to accept and store the calibration results. The conditions are based on the following measurements or calculations:

- 1. Master Part Loss
 - a. Must be greater than the Min Master Loss limit
 - b. Must be less than the Max Master Loss limit
 - c. Must be less than the Master+Leak Loss measurement.
- 2. Master+Leak Loss
 - a. Must be greater than the Min Mstr+Leak Loss limit
 - b. Must be less than the Max Mstr+Leak Loss limit
 - c. Must be greater than the Master Loss measurement
- 3. Leak Loss
 - a. Must be greater than the Min Leak Loss limit
 - b. Must be less than the Max Leak Loss limit
- 4. Performance Factor
 - a. Must be greater than the Min Perform Factor limit

If the procedure does not meet these conditions, error messages are displayed at the completion of tests.

8/23/2018 37 www.cincinnati-test.com

If the Program Cal routine is successfully completed, "PROGRAM CALIBRATION PASSED" will be displayed. If there are any problems during the Program Cal sequence an error will be displayed. If there is an error, see $\underline{\text{Appendix A}}$ - Message and Error Codes.

8/23/2018 38 www.cincinnati-test.com

Calibration Parameters

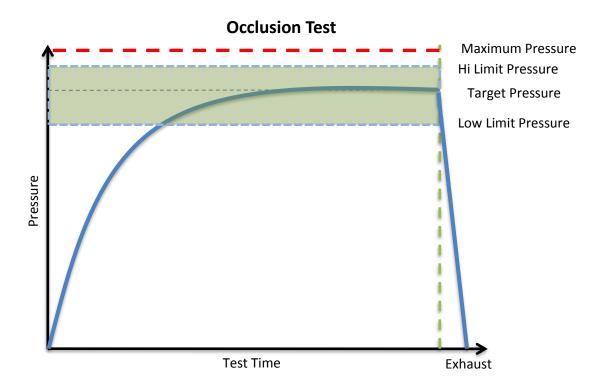
The Calibration parameters menu is located in the **Main Menu > Program Config > CAL:PLR** icon. These calibration parameters are values that are measured or calculated as a result of the Program Cal routine for a Pressure Decay-Leak Std test. The table below describes the parameters.

Parameter	Description	Display User Level
Performance Factor	Resultant evaluation of ratio of Master Part Loss to Master+Leak Loss, Test Pressure, and loss due to Leak Std.	Basic Advanced, Admin
Master Part Press	Measured pressure at the beginning of the test segment during the first test of the Program Cal routine for the non-leaking master part.	Basic Advanced, Admin
Master+Leak Press	Measured pressure at the beginning of the test cycle of second test during Program Cal routine for the non-leaking master part with the leak standard introduced to the pneumatic test circuit.	Basic Advanced, Admin
Master Part Loss	Measured pressure loss for the non-leaking master part during the first test of the Program Cal routine .	Viewable in Basic & Advanced Editable in Admin
Master+Leak Loss	Measured pressure loss during the second test of the Program Cal routine for the non-leaking master part with the leak standard introduced to the pneumatic test circuit.	Viewable in Basic & Advanced Editable in Admin
Leak Loss	Calculated pressure loss, based upon measured pressure losses during the Program Cal routine. Corresponds to the actual pressure loss related to the leak standard.	Viewable in Basic & Advanced Editable in Admin
Corr. Leak Std Flow	The calculated leak standard flow rate based on the Program Target Pressure, the leak standard calibrated pressure, and the leak standard calibrated flow rate.	Basic Advanced, Admin

8/23/2018 39 www.cincinnati-test.com

This page is intentionally blank.

8/23/2018 40 www.cincinnati-test.com


Chapter 6 – Occlusion

This chapter explains the theory and parameters for conducting an Occlusion Test. The result of this test is the measured back pressure at the expiration of the Test sequence.

The Occlusion Test is a back pressure test. The part is pressurized throughout the test from a fixed pressure regulator setting. At the end of the Test timer the actual test pressure is compared to the Low Limit Pressure and High Limit Pressure settings. Low Limit Pressure indicates high flow or minimum blockage or low back pressure. High Limit Pressure indicates low flow or maximum blockage or high back pressure.

The Chart below give an overview of the parameters used to set up an Occlusion Test. The Tables that follow give detailed descriptions of each parameter and also document the Display User Level associated with each parameter.

Note: To change the Display User Level, see Chapter 15 – Features.

8/23/2018 41 www.cincinnati-test.com

Timer Parameters

The Timers menu is located in the Main Menu > Program Config > Timers icon.

Timer	Description	Display User Level
Tooling Extend	When tooling control is specified, there can be up to five extend timers for up to five tooling motions. This is a not to exceed timer when feedback is being utilized.	Advanced, Admin
Test	At the end of this timer, the instrument will read the pressure on the pressure transducer. This pressure is due to the backpressure created in the pneumatic circuit and part.	Basic Advanced, Admin
Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	Basic Advanced, Admin
Tooling Retract	When tooling control is specified, there can be up to five retract timers for up to five tooling motions. This is a not to exceed timer when feedback is being utilized.	Advanced, Admin

Pressure Parameters

The Pressure menu is located in the Main Menu > Program Config > Pressure icon.

Pressure	Description	Display User Level
Target Pressure	Target test pressure.	Basic Advanced, Admin
Maximum Pressure	The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle will end as an Over Pressure Malfunction.	Basic Advanced, Admin

8/23/2018 42 www.cincinnati-test.com

Test Parameters

The Test parameters menu is located in the **Main Menu > Program Config > TST:OCC** icon.

TST Parameter	Description	Display User Level
Low Limit Pressure	Lower set point value used to evaluate test results.	Basic Advanced, Admin
High Limit Pressure	Upper set point value used to evaluate test results.	Basic Advanced, Admin
Test Evaluation	Test results are compared to two set points for pass or fail status. There are three areas for evaluation of results: above high limit, between limits, and below low limit. See Table below for codes.	Advanced, Admin

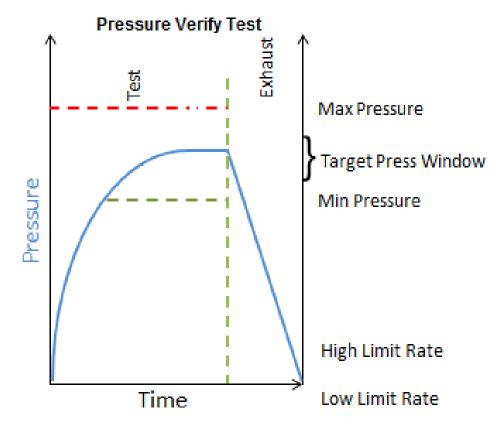
8/23/2018 43 www.cincinnati-test.com

This page is intentionally blank.

8/23/2018 44 www.cincinnati-test.com

Chapter 7 – Pressure Verify

This chapter explains the theory and parameters for conducting a Pressure Verify test.


The Pressure Verify test is intended to test parts that generate vacuum or pressure, or to verify that the part was pre-charged to the correct pressure, or to verify that the part was evacuated or filled by an external source.

The principle of operation is to close the isolation valve on the internal manifold to isolate the part. The pressure transducer then reads the vacuum or pressure generated by the part or that is already in the part. At the end of the test timer, the test pressure is compared to the low limit pressure and high limit pressure settings. The Test Result is recorded with an overall ACCEPT/REJECT

If the Pressure Verify test was performed with the Self-Test cap on the test port, the only pressure measured will be the small pressure that is trapped by the isolation valve as it actuates to close.

The Tables that follow give detailed descriptions of each parameter and also document the <u>Display User Level</u> associated with each parameter.

8/23/2018 45 www.cincinnati-test.com

Timer Parameters

The Timers menu is located in the Main Menu > Program Config > Timers icon.

Timer	Description	User Display Mode
Test	Amount of time allocated to each segment for execution before continuing. The pressure measurement is made at the end of the Test segment.	Basic Advanced, Admin
Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	Basic Advanced, Admin

Pressure Parameters

The Pressure menu is located in the Main Menu > Program Config > Pressure icon.

Pressure	Description	User Display Mode
Maximum Pressure	The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle will end as an Over Pressure Malfunction.	Basic Advanced, Admin

Test Parameters

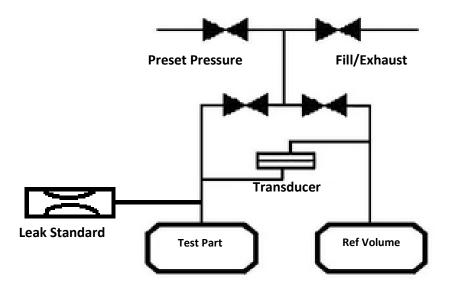
The Test parameters menu is located in the Main Menu > Program Config > TST:PVT icon.

TST Parameter	Description	User Display Mode
Low Limit Pressure	Lower setpoint value used to evaluate test results.	Basic Advanced, Admin
High Limit Pressure	Upper setpoint value used to evaluate test results.	Basic Advanced, Admin
Test Evaluation	Test results are compared to two setpoints for pass or fail status. There are three areas for evaluation of results: Above high limit, Between limits, and Below low limit. See Table below for codes	Advanced, Admin

8/23/2018 46 www.cincinnati-test.com

Chapter 8

Differential Pressure (DP) Decay-ΔP


This chapter explains the theory and parameters for conducting a pressure decay test measuring a pressure loss over time utilizing a Differential Pressure (DP) transducer. The result of this test is the pressure loss (or gain for a vacuum test) measured over a fixed period of time, presented in units of pressure.

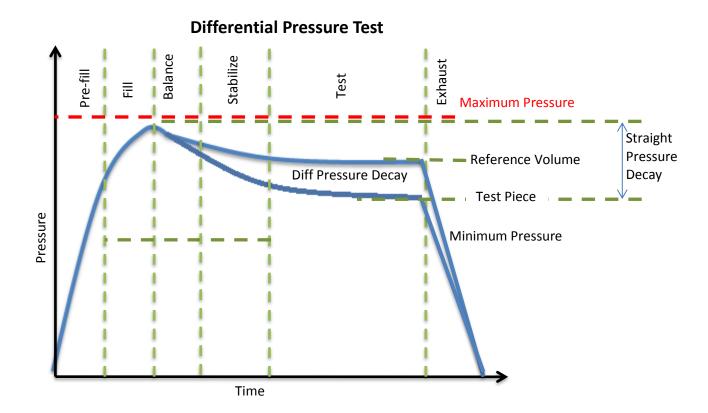
How it works

In order to detect leakage in a part, the change in pressure due to temperature and part elasticity must be allowed to settle before taking any pressure readings.

With differential pressure, a reference part volume (should be identical to the nominal test part volume) is pressurized simultaneously with the test part.

Leaks are determined by detecting the rate of pressure loss between the two parts.

8/23/2018 47 www.cincinnati-test.com


Test Setup

The test part and the reference volume are simultaneously pressurized to a preset pressure. The air in the system is then allowed to stabilize, with the supply valves all closed. After the stabilization time, the Differential Pressure Transducer is automatically zeroed.

During test, the pressure change in the test piece is compared to the pressure change in the reference volume, using the Differential Pressure Transducer. If the test piece is leaking, the difference will increase and be measured; an alarm limit may be set for a pass/fail decision.

The charts in this s chapter give an overview of the parameters used to set up a Pressure Differential Test and correlate the results to a flow rate using a leak standard. The Tables that follow give detailed descriptions of each parameter and also document the Display User Level associated with each parameter.

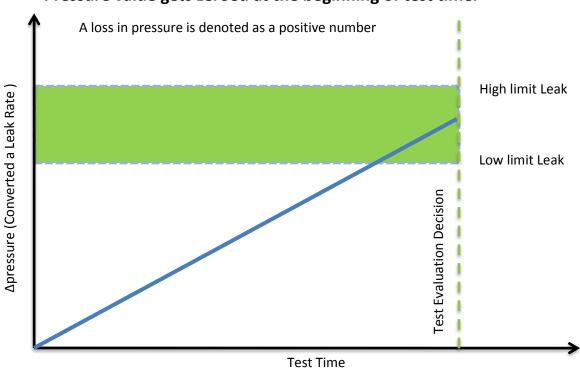
Note: To change the Display User Level, see Chapter 15 – Features.

8/23/2018 48 www.cincinnati-test.com

Timer Parameters

The Timers menu is located in the Main Menu > Program Config > Timers icon.

Timer	Description	User Display Mode
Tooling Extend	When tooling control is specified, there can be up to five extend timers for up to five tooling motions.	Basic Advanced, Admin
Prefill	Percentage of the fill timer where the minimum pressure limit is not monitored. This allows time within the fill stage for the instrument to achieve the minimum test pressure.	Advanced, Admin
Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.	Basic Advanced, Admin
Balance	Time to allow the DP sensor to be introduced into the test circuit. The reference volume and test part should be close to fully charged before the balance portion of the test.	Basic Advanced, Admin
Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.	Basic Advanced, Admin
Test	At the end of this timer, the instrument will read the pressure on the pressure transducer. This pressure is due to the backpressure created in the pneumatic circuit and part.	Basic Advanced, Admin
Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	Basic Advanced, Admin
Tooling Retract	When tooling control is specified, there can be up to five retract timers for up to five tooling motions. This is a not to exceed timer when feedback is being utilized.	Advanced, Admin


8/23/2018 49 www.cincinnati-test.com

Pressure Parameters

The Pressure menu is located in the Main Menu > Program Config > Pressure icon.

Pressure	Description	User Display Mode
Minimum Pressure	Minimum test pressure that must be met within the Pre- fill timer and maintained during the Fill and Stabilization timers. This is an early indication of a major leak	Basic Advanced, Admin
Target Pressure	Target test pressure. Also used as a setpoint for the Electronic Regulator.	Basic Advanced, Admin
Maximum Pressure	The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle (during Fill and Stabilization) will end as an Over Pressure Malfunction.	Basic Advanced, Admin

Pressure value gets zeroed at the beginning of test timer

8/23/2018 50 www.cincinnati-test.com

Test Parameters

The Test parameters menu is located in the Main Menu > Program Config > TST: DPD icon.

TST Parameter	Description	User Display Mode
Low Limit Loss	Lower set point value used to evaluate test results.	Basic Advanced, Admin
High Limit Loss	Upper set point value used to evaluate test results.	Basic Advanced, Admin
Decay Direction	Defines the method for calculating the part pressure decay during test: Loss – charged part decreasing pressure or evacuated part decreasing vacuum, Gain – part pressure increasing from external forces.	Basic Advanced, Admin
Loss Offset	Manual compensation value which is added to the measured loss when calculating the final pressure loss for the test.	Basic Advanced, Admin
EDC Enabled	When enabled, Environmental Drift Correction (EDC) monitors and continually corrects final Leak Rate calculations based on the moving average shift of test results within a band about the Master Part calibration curve.	Advanced, Admin
EDC Percentage	Percentage (Plus and Minus) band defined by a percentage of High Limit about the Master Part Curve. EDC continually accumulates and calculates an offset for the test results.	Advanced, Admin
EDC Quantity	Number of test results utilized in calculating the EDC factor.	Advanced, Admin

8/23/2018 51 www.cincinnati-test.com

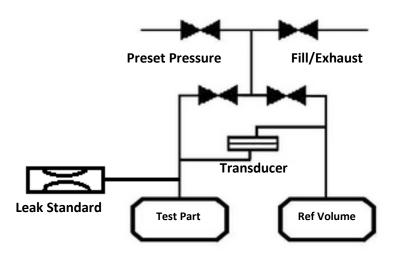
This page is intentionally blank.

8/23/2018 52 www.cincinnati-test.com

Chapter 9

Differential Pressure (DP) Decay-Leak Std

This chapter explains the theory and parameters for conducting a Differential Pressure (DP) Decay Test with Leak Standard. Pressure loss is measured utilizing a Differential Pressure (DP) transducer. The pressure loss is correlated to a leak rate using a leak standard. This test requires a two cycle calibration routine to correlate the pressure loss to a flow rate. The result of this test is presented in units of flow.


This test type utilizes a two-point calibration sequence with a non-leaking master part to record the zero leak pressure loss value and the additional pressure loss value due to the flow rate of the leak standard on the second calibration cycle.

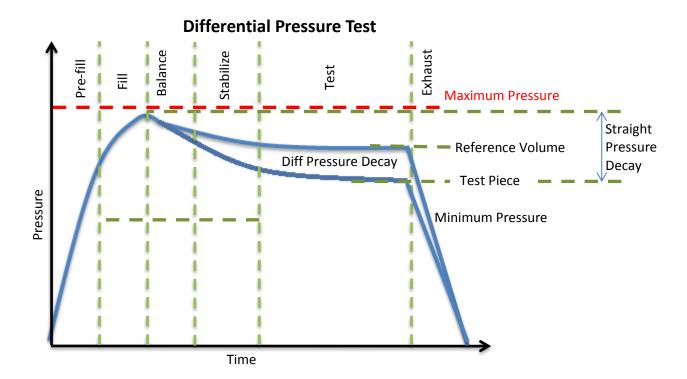
How it works

In order to detect leakage in a part, the change in pressure due to temperature and part elasticity must be allowed to settle before taking any pressure readings.

With differential pressure, a reference part volume (should be identical to the nominal test part volume) is pressurized simultaneously with the test part.

Leaks are determined by detecting the rate of pressure loss between the two parts.

8/23/2018 53 www.cincinnati-test.com


Test Setup

The test part and the reference volume are simultaneously pressurized to a preset pressure. The air in the system is then allowed to stabilize, with the supply valves all closed. After the stabilization time, the Differential Pressure Transducer is automatically zeroed.

During test, the pressure change in the test piece is compared to the pressure change in the reference volume, using the Differential Pressure Transducer. If the test piece is leaking, the difference will increase and be measured; an alarm limit may be set for a pass/fail decision

The charts in this chapter give an overview of the parameters used to set up a Pressure Differential Test and correlate the results to a flow rate using a leak standard. The Tables that follow give detailed descriptions of each parameter and also document the Display User Level associated with each parameter.

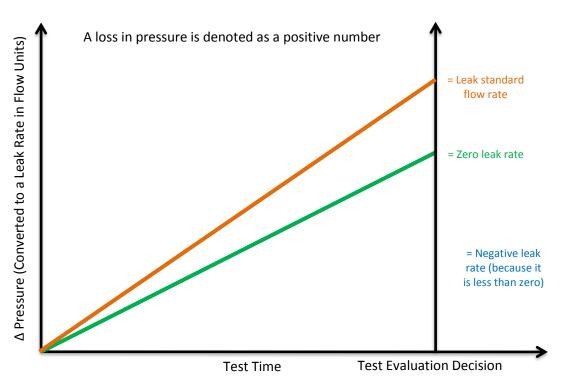
Note: To change the Display User Level, see Chapter 15 - Features.

8/23/2018 54 www.cincinnati-test.com

Timer Parameters

The Timers menu is located in the Main Menu > Program Config > Timers icon.

Timer	Description	User Display Mode
Tooling Extend 1	When tooling control is specified, there can be up to five extend timers for up to five tooling motions.	Basic Advanced, Admin
Prefill	Percentage of the fill timer where the minimum pressure limit is not monitored. This allows time within the fill stage for the instrument to achieve the minimum test pressure.	Advanced, Admin
Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.	Basic Advanced, Admin
Balance	Time to allow the DP sensor to be introduced into the test circuit. The reference volume and test part should be close to fully charged before the balance portion of the test.	Basic Advanced, Admin
Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.	Basic Advanced, Admin
Test	At the end of this timer, the instrument will read the pressure on the pressure transducer. This pressure is due to the backpressure created in the pneumatic circuit and part.	Basic Advanced, Admin
Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	Basic Advanced, Admin
Tooling Retract 1	When tooling control is specified, there can be up to five retract timers for up to five tooling motions. This is a not to exceed timer when feedback is being utilized.	Advanced, Admin
Relax	Timer used during Program Cal routine as a delay between calibration cycles to allow the master part to recover to repeatable virgin state. (Too short relax times result in decreasing pressure losses/flow results in successive tests.)	Basic Advanced, Admin


8/23/2018 55 www.cincinnati-test.com

Pressure Parameters

The Pressure menu is located in the Main Menu > Program Config > Pressure icon.

Pressure	Description	User Display Mode
Minimum Pressure	Minimum test pressure that must be met within the Pre- fill timer and maintained during the Fill and Stabilization timers. This is an early indication of a major leak	Basic Advanced, Admin
Target Pressure	Target test pressure. Also used as a setpoint for the Electronic Regulator.	Basic Advanced, Admin
Maximum Pressure	The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle (during Fill and Stabilization) will end as an Over Pressure Malfunction.	Basic Advanced, Admin

Pressure value gets zeroed at the beginning of test timer

8/23/2018 56 www.cincinnati-test.com

Test Parameters

The Test parameters menu is located in the Main Menu > Program Config > TST: DPL icon.

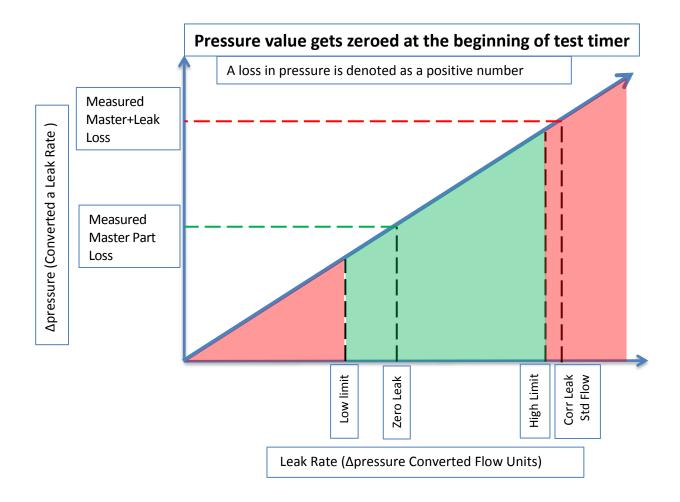
TST Parameter	Description	User Display Mode
Low Limit Leak	Lower set point value used to evaluate test results of parts.	Basic Advanced, Admin
High Limit Leak	Upper set point value used to evaluate test results of parts.	Basic Advanced, Admin
Decay Direction	Defines the method for calculating the part pressure decay during test: Loss – charged part decreasing pressure, Gain – part increasing pressure from external forces.	Basic Advanced, Admin
Min Mstr+Leak Loss	Minimum pressure loss allowable for the master part with Leak Standard during the calibration cycle. Use to prevent calibration to leaking master parts or fixtures.	Basic Advanced, Admin
Max Mstr+Leak Loss	Maximum pressure loss allowable for the master part with Leak Standard during the calibration cycle. Use to prevent calibration to leaking master parts or fixtures.	Basic Advanced, Admin
Min Leak Loss	Minimum pressure loss allowed that represents the pressure loss due to the Leak Standard used to calibrate the instrument.	Basic Advanced, Admin
Max Leak Loss	Maximum pressure loss allowed that represents the pressure loss due to the Leak Standard used to calibrate the instrument.	Basic Advanced, Admin
Min Master Loss	Minimum pressure loss allowable for the Master Part during the calibration cycle. Use to prevent calibration to the Self-Test cap.	Basic Advanced, Admin
Max Master Loss	Maximum pressure loss allowable for the Master Part during the calibration cycle. Use to prevent calibration to the Self-Test cap.	Basic Advanced, Admin
Min Perform Factor	Minimum acceptable value for the Performance Factor compared after the calibration cycle to prevent improper calibration.	Basic Advanced, Admin
EDC Enabled	When enabled, Environmental Drift Correction (EDC) monitors and continually corrects final Leak Rate calculations based on the moving average shift of test results within a band about the Master Part calibration curve.	Advanced, Admin
EDC Percentage	Percentage (Plus and Minus) band defined by a percentage of High Limit about the Master Part Curve. EDC continually accumulates and calculates an offset for the test results.	Advanced, Admin
EDC Quantity	Number of test results utilized in calculating the EDC factor.	Advanced, Admin

8/23/2018 57 www.cincinnati-test.com

8/23/2018 58 www.cincinnati-test.com

Program Calibration

In order to convert the pressure loss measured by the instrument to a leak (flow) rate, the instrument uses a leak standard and needs to run the "Program Cal" routine. This procedure requires at least one known non-leaking part referred to as a "master part". This procedure tests a non-leaking master part connected to the instrument using the timers and pressures established for the program. The procedure automatically tests the non-leaking master part twice with the Relax timer delay between tests. Within each program that uses a leak standard, Program Cal can be configured to use one of four methods. See Setting the Cal Method and Leak Standard Location in Chapter 15 – Features.



Remember: The Leak/Cal menu has a parameter called Leak Std/Cal Define that determines the location for the leak standard settings.

When set to "Channel", leak standard settings are located in the Channel Config menu.

When set to "Program", leak standard settings are located in the Program menu.

Determine how you plan to use your leak test instrument. Review Setting the Leak Standard Values section on page 16. It is critical to make sure the leak standard values are set correctly for proper use. To view the Cal Method parameter, you must be in the Advanced or Admin Display User Level. To change the Display User Level, see Chapter 15 – Features.

8/23/2018 59 www.cincinnati-test.com

Initiating the Program Cal Sequence

To initiate a Program Cal routine, go to **Main Menu > Program Cal** icon, select **OK** and press **Enter**. The Program Cal wizard will tell you to connect a non-leaking master part. Connect the non-leaking master part to the instrument. Push the Start button to initiate the Program Cal routine. The system will conduct an initial test of the non-leaking master part to measure the pressure loss associated with a non-leaking part. This represents the typical offset associated with testing parts within the environment of the test system. The pressure loss value is saved as the Master Part Loss. The system will conduct a second test on a non-leaking master part with a known calibrated leak standard included in the test. The pressure loss value result for this test is saved as the Master+Leak Loss.

Performance Factor

Upon the successful completion of the Program Cal routine, the display will show the calculated Performance Factor for the calibration. The Performance Factor is an estimate of the quality of the calibration. It combines the ratio of the Hi Limit Leak result to the non-leaking master part result, the test pressure, and difference between the Hi Lim result and the non-leaking master part result to scale its anticipated performance. This value ranges from 0 to 100. It is generally desirable to have a Performance Factor of 35 to 100. The actual acceptable Performance Factor can vary depending on the desired Gage R&R performance of the test. Here is the Performance Factor equation:

Performance Factor = Cal Ratio x Pressure Loss Penalty x Time Penalty x 100

The pressure loss penalty is greater for smaller pressure loss values. The time penalty is greater for shorter Test cycle timer values. Generally, longer stabilize and test cycle timer settings will produce higher Performance Factors and improved Gage R&R performance.

Note: The instrument will require a Program Cal routine if any parameters that affect the calibration are modified.

Conditions for a Successful Calibration

Several conditions must be met during the Program Calibration routine for the instrument to accept and store the calibration results.

The conditions are based on the following measurements or calculations:

- 1. DP Master Part Loss
 - a. Must be greater than the Min Master Loss limit
 - b. Must be less than the Max Master Loss limit.
 - c. Must be less than the Master+Leak Loss measurement
- 2. DP Master+Leak Loss
 - a. Must be greater than the Min Mstr+Leak Loss limit
 - b. Must be less than the Max Mstr+Leak Loss limit
 - c. Must be greater than the Master Loss measurement
- 3. DP Leak Loss
 - a. Must be greater than the Min Leak Loss limit
 - b. Must be less than the Max Leak Loss limit
- 4. Performance Factor
 - a. Must be greater than the Min Perform Factor limit

8/23/2018 60 www.cincinnati-test.com

If the Program Cal routine is successfully completed, "PROGRAM CALIBRATION PASSED" will be displayed. If there are any problems during the Program Cal sequence an error will be displayed. If there is an error, see Appendix A - Message and Error Codes.

8/23/2018 61 www.cincinnati-test.com

Calibration Parameters

The Calibration parameters menu is located in the **Main Menu > Program Config > CAL: DPL** icon. These calibration parameters are values that are measured or calculated as a result of the Program Cal routine for a Differential Pressure Decay-Leak Std test.

CAL Parameter	Description	User Display Mode
Performance Factor	This is a Performance value generated by the actual calibration cycle to be compared to the Min Perform Factor input as a Test Parameter.	Basic Advanced, Admin
Master Part Press	Actual pressure data generated for the master part during the calibration cycle.	Advanced, Admin
Master+Leak Press	Actual pressure data generated for the master part with Leak Standard during the calibration cycle.	Basic Advanced, Admin
DP Master Part Loss	Differential pressure loss during the calibration cycle of the Master Part and stored to represent normal differential loss at the specified Target Pressure.	* Viewable in Basic & Advanced Editable in Admin
DP Master+Leak Loss	Differential pressure loss during the calibration cycle of the Master Part with Leak Standard and stored to represent normal loss + leak standard differential loss at the specified Target Pressure.	* Viewable in Basic & Advanced Editable in Admin
DP Leak Loss	Calculated differential pressure loss, based upon measured differential pressure losses during the Program Cal routine. Corresponds to the actual differential pressure loss related to the leak standard.	*Viewable in Basic & Advanced Editable in Admin
Master Part Loss	Pressure loss during the calibration cycle of the Master Part and stored to represent normal loss at the specified Target Pressure.	* Viewable in Basic & Advanced Editable in Admin
Master+Leak Loss	Pressure loss during the calibration cycle of the Master Part with Leak Standard and stored to represent normal loss + leak standard loss at the specified Target Pressure.	* Viewable in Basic & Advanced Editable in Admin
Leak Loss	Calculated pressure loss, based upon measured pressure losses during the Program Cal routine. Corresponds to the actual pressure loss related to the leak standard.	*Viewable in Basic & Advanced Editable in Admin
Corr. Leak Std Flow	The calculated leak standard flow rate based on the Program Target Pressure, the leak standard calibrated pressure, and the leak standard calibrated flow rate.	Advanced, Admin

Note: * = These CAL parameters are for those customers who want to do CALS on a series of parts so they can manually input the ideal settings for these parameters to compare against.

8/23/2018 62 www.cincinnati-test.com

Chapter 10 – Tooling Control

This chapter explains the tooling control capability of the instrument. Tooling control is a powerful feature that gives the instrument the ability to control cylinders and seal actuations.

Note: The instrument must be in Advanced or Admin Display User Level to view and modify the tooling functionality. To change the Display User Level, see Chapter 15 – Features.

The instrument includes user selectable digital inputs and outputs to increase the functionality and simplify the application to various test requirements. The tooling functions are defined within each program. This allows the flexibility to use different tooling functions; permitting the ability to seal unique ports for each program. The tooling functions are located in **Main Menu > Program Config > Tooling** icon.

It is important that all precautions be taken when using the tooling control functions of the instrument. If motions are being controlled, it is important to follow best engineering practices while designing the circuitry. This may include using safety modules in the circuit.

In order to implement the tooling functions, they must be interfaced with the inputs and outputs. See <u>Chapter 11</u> - Inputs and Outputs.

Menus

Parameter	Description	Display User Level
Tooling Option	The options for this parameter are On, Off, and Disabled. On causes the tooling motion timers to appear on the Timers menu. When On, the instrument will perform these timers in the order they are listed. It will also allow the associated tooling outputs to appear in the selectable list in the Outputs menu. When Disabled, the tooling motion timers still appear but are ignored. It will also allow the associated tooling outputs to appear in the selectable list; however, the outputs are not active in this mode. When Off, the timers will not appear or be active.	Advanced, Admin
Number of Motions	This parameter defines the number of motions intended to be used. You can have 1 motion.	Advanced, Admin
Part Present Check	This parameter is not editable. It determines that the part present input is checked when the start input is received. This parameter is active only when one of the Inputs is set to "Part Present".	Advanced, Admin

8/23/2018 63 www.cincinnati-test.com

This page is intentionally blank.

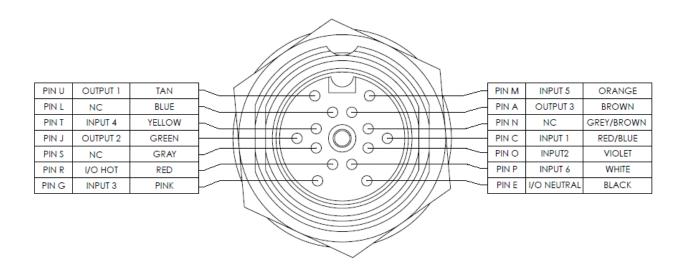
8/23/2018 64 www.cincinnati-test.com

Chapter 11 – Inputs and Outputs

This chapter explains the Input and Output (I/O) capabilities of the instrument. The I/O parameters are located in Main Menu > Program Config > HW Input and HW Output icons.

Note: The instrument must be in Advanced or Admin Display User Level to view and modify the Input and Output functionality. To change the Display User Level, see Chapter 15 – Features.

The instrument includes user selectable digital inputs and outputs to increase the functionality and simplify the application to various test requirements. The inputs and outputs are divided into two groups — Universal and Program Specific. When a Universal input or output is assigned in a program, it is automatically assigned and available within all programs. When a Program Specific input or output is assigned in a program, that particular input or output is constrained to use only the inputs or outputs within the same Functional Group. When the input or output is set to "Constrained" in a program, it will not function within that program.


In order to remove the selection of an input or an output, change the parameter to either "Unassign" or "Unassign all Prog". Selecting "Unassign all Prog" will remove the selection of the input or output for all of the programs. Selecting "Unassign" will only remove the selection from the current program. "Unassign" is not available for Universal inputs or outputs.

8/23/2018 65 www.cincinnati-test.com

Input and Output Wiring

The instrument comes equipped with 6 programmable sinking inputs and 3 programmable sourcing outputs. Both inputs and outputs are 24VDC.

Input and Output Connector Pinout

Digital Inputs 1-6 (24VDC NOMINAL)

Digital Outputs 1-3 (24VDC NOMINAL)

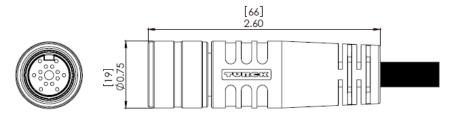
Maximum current draw for an individual output is 500 mA

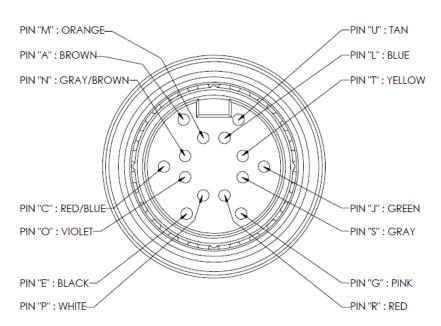
Maximum current draw for all combined outputs are 1A

8/23/2018 66 www.cincinnati-test.com

Input and Output Table

		Instrument Connector	Cable Connector	
Input	Wire Color	Pin	Pin	Wire Color
1	Red/Blue	С	С	Red/Blue
2	Violet	О	О	Violet
3	Pink	G	G	Pink
4	Yellow	T	Т	Yellow
5	Orange	M	M	Orange
6	White	Р	Р	White


		Instrument Connector	Cable Connector	
Output	Wire Color	Pin	Pin	Wire Color
1	Tan	U	U	Tan
2	Green	J	J	Green
3	Brown	A	A	Brown


I/O		Instrument Connector	Cable Connector	
Power	Wire Color	Pin	Pin	Wire Color
Hot	Red	R	R	Red
Common	Black	Е	Е	Black

User selectable or programmable outputs are listed in a table on page 67.

8/23/2018 67 www.cincinnati-test.com

14 Pin Digital I/O Cable Diagram and Pinout Table

CTS Part Number: CABLE, TURCK, BKM14-002-6

PIN ID & COLOR	OUTPUTS	INPUTS	POWER
A = BROWN	OUTPUT 3		
C = RED/BLUE		INPUT 1	
E = BLACK			I/O COMMON
G = PINK		INPUT 3	
J = GREEN	OUTPUT 2		
L = BLUE			
M = ORANGE		INPUT 5	
N = GRAY/BROWN			
O = VIOLET		INPUT 2	
P = WHITE		INPUT 6	
R = RED			I/O HOT
S = GRAY			
T = YELLOW	_	INPUT 4	
U = TAN	OUTPUT 1		

8/23/2018 68 www.cincinnati-test.com

Programmable Inputs and Outputs Menus

Input Options		
Start Channel		
Start Program		
Stop/Reset		
Hold		
Vent/Halt		
Program Cal		
Open Leak Std		
Part Present		
SPC Test Part		
Instrument Enable		
Program Select B1		
Program Select B2		
Program Select B3		
Program Select B4		
Program Select B5		
Ext Press Sw		
Unassigned		

Output Options
Malfunction
Tool Extend 1
In Relax
Program Cal Mode
Program Cal Master
Program Cal Leak Std
Press Select
Prefill
In Fill
Fill Valve
In Stabilize
Isolation Valve
In Test
Test Passed
Test Failed
Bellow LL
Between Lim
Above HL
In Exhaust
Program Accept
Program Reject
Severe Leak
Tool Retract 1
Unassigned

The Inputs and Outputs above are listed in their menu selection order.

Descriptions of these menu options are on the following pages are in related groups.

8/23/2018 69 www.cincinnati-test.com

Inputs for Program Control

Input	Description
Start Channel	Starts the active Program
Common	The Start Channel and Common inputs are universal inputs, where each part program can be set individually to use "Two Inputs to Start" or "Anti-Tie-Down" logic.
Vent/Halt	The Vent/Halt input safely ceases the operation of any tooling motion, removes all energy from the part by advancing through the exhaust segment and stops operation. Any programmed tooling motion required to return to the fully retracted positions must be initiated by the Stop/Reset input. While the Vent/Halt input is high, no additional test activity or tooling resets can occur. See description below.
Start Program	Changes the Current Program to the one assigned to this input and Starts the Program.
Stop/Reset	The Stop/Reset input is available to stop tests and retract tooling. When a stop/reset input is received the test cycle goes immediately through a Vent/Halt routine and then advances to retract the tooling. The Malfunction output (if programmed) will go high at the end of the last tooling motion for errors defined as malfunctions. See description below.
Hold	The Hold input halts or suspends the testing sequence as long as this input is high. This can be used to stop the testing while awaiting some other action to occur.
Part Present	Enabled by selecting Part Present as one of the inputs, the Part Present input must be high before a start test input is received. It also must go low between tests (after any tooling motion and before the start of the tooling motion for the next test). If more than one input is set to "Part Present", test will execute only if all inputs are made high.
Ex Press Sw	Enabled by selecting Ext Press Sw as one of the inputs, the External Pressure Switch input must go high before the end of the fill segment. This input is generally used to validate that the test part is properly charged by detecting pressure downstream of a potential blockage point. For Occlusion test type where fill segment is not present, Ext Press Sw input must go high before the end of the test segment. If Ext Press Sw input is not made high during test execution then a malfunction occurs. For more than one input of Ext Press Sw, test will execute only if all inputs are made high before test segment of Occlusion test and fill segment for other test types.
Instrument Enable	Enabled by selecting Instrument Enable as one of the inputs, the Instrument Enable input must be high before a start test input is received. If the input doesn't go high before executing any test, it shows the malfunction message. If the input goes low in between test execution then test aborts and shows malfunction message. For more than one input of Instrument Enable, test will execute only if all inputs are made high and test aborts with malfunction message if any one input is low or made low in between test execution.

8/23/2018 70 www.cincinnati-test.com

Vent/Halt Request

The design of a Vent/Halt request (including initial phase of the Stop/Reset request) is to cease operation of tooling motions, safely remove all energy from the part, and stop operation.

A Vent/Halt request operation has multiple operations depending on the state of the instrument while testing. For better understanding, the test sequence can be broken into three basic groups: Tooling Extend, Part Testing, and Tooling Retract. The Program Evaluation (Accept Program/Reject Program/Malfunction/Severe Leak) is always after the Tooling Retract.

Other than a user generated Vent/Halt input, a number of test errors will generate a Vent/Halt request. Possible scenarios include:

8/23/2018 71 www.cincinnati-test.com

Vent/Halt - Instrument Idle

While the instrument is idle, a high Vent/Halt input will prevent the instrument from performing any test activity or tooling reset. Any type of Start or Stop request will be ignored until the Vent/Halt input is low.

Vent/Halt - Instrument execution during Tooling Extend Group

A Vent/Halt request will cause the output related to an executing Tooling Extend to be turned off. If the extend output is completed, it will remain in its current state. Since the part has not been charged no exhaust is necessary and execution will cease. A Tooling Reset is required.

Vent/Halt – Instrument execution during Part Testing Group

A Vent/Halt request will cause the instrument to exhaust any pressure within the part (if pressure was achieved) and execution will cease. Any output relating to Tooling Extend will remain in its current state. A Tooling Reset is required.

Vent/Halt - Instrument execution during Tooling Retract Group

A Vent/Halt request will cause the output relating to the current executing Tooling Retract to be turned off. Since the part has already been exhausted, execution will cease. A Tooling Reset is required.

Stop/Reset Request

The design of a Stop request is to safely remove all energy from the part, place the tooling into a fully retracted state, and stop operation. Depending on whether the instrument is actively testing or idle, the stop request has two modes of operations.

Stop – Instrument Testing

• If actively testing, a Stop request will cause the instrument to exhaust any pressure within the part (if pressure was achieved), and then execute a tooling reset sequence (only if tooling is enabled). The retract motion will be executed into a known retracted state for the next test.

Stop – Instrument Idle

• If the instrument is idle or in a safe state with the part pressure exhausted, a Stop request will cause the instrument to execute a tooling reset sequence (only if tooling is enabled). The retract motion will be executed into a known retracted state for the next test.

Besides a user generated Stop, a number of test errors will generate a Stop/Reset request that causes a Vent/Halt routine and continues with the tooling reset. The possible scenarios include: Transducer Malfunction (zero or over-range), External Switch Fault (not low or high at appropriate time), Severe Leak, Pressure Low/High, Calculation Faults, Calibration Errors, and General Program Fault (setup errors).

In addition, Stop/Reset input is required:

- After any tooling motion or test malfunction where the instrument completed Vent/Halt to safe state and stopped.
- Tooling must be reset to fully retracted position to start next test.

8/23/2018 72 www.cincinnati-test.com

Inputs for Program Selection

Input		Description
Binary Program	or using one of the commun of required inputs for Binary	elected using the Binary Program Selection inputs ication methods: RS232 or TCP/IP. The number Program Selection depends on the highest gram to which access is required.
Selection	Program Numbers	Binary Program Inputs
Selection	1	B1
	2-3	B1 and B2
	4 – 7	B1, B2, and B3
	8 - 15	B1, B2, B3, and B4
	16 – 31	B1, B2, B3, B4 and B5

Note: The Program may also be remotely selected using Digital I/O (see Chapter 11), using EtherNet/IPTM (see Chapter 12), or using RS232 or TCP/IP Communication methods (see Chapter 13).

Inputs for Program Calibration

Input	Description
Program Cal	The Program Cal input prepares the instrument to perform a Program Cal routine. A Start input initiates the tooling motion and Program Cal routine.
Open Leak Std	The Open Leak Standard input will open the Leak Standard Calibration valve (if equipped) during the Fill, Stabilization, Test, and Exhaust segments. The valve will only open during the testing cycle when the input is high. If the input goes low during the testing cycle, the Leak Std Calibration valve will close. This input is generally used to automatically verify the calibration of a system by indexing or placing a good part in the test fixture and adding the internal leak standard to measure a part with the leak rate equal to the internal leak standard.
SPC Test Part	The SPC Test Part input identifies the next part to test as an SPC Part (often used when performing a test calibration verification test with a leak standard). This input must be high when receiving the Start input. This will mark the test results in the program result with an "*". Also the test result output using the communication port will include the "*" to identify these parts for separate analysis.

8/23/2018 73 www.cincinnati-test.com

Outputs for Test Cycles

Output	Description
	Pressure Select goes high during the entire test sequence from start of Prefill
Press Select	or Fill segment to the end of Exhaust segment. This output can be used as a
	Test Active output.
	The Prefill output goes high during the Prefill portion of the Fill segment.
Prefill	This output is frequently used to control an external fast-fill valve when
1 ICIIII	testing large volume parts. The external fast-fill valve opens until the
	instrument reaches the Minimum Pressure.
In Fill	The Fill segment output goes high during the Fill segment.
Fill Valve	This output mimics the Fill Valve functionality in the instrument. It goes
T III V aive	high during the Prefill and Fill segments.
In Stabilize	The Stabilization segment output goes high during the Stabilization segment.
	This output mimics the Isolation Valve functionality in the instrument. It
Isolation Valve	goes high just prior to the fill valve closing and stays energized until the end
	of the Test segment.
In Test	The Test segment output goes high during the Test segment.
	The Exhaust segment output goes high during the Exhaust segment. This
In Exhaust	output is frequently used to open an external exhaust valve that vents the
III Extraust	test air from the part through a larger valve for fast exhaust or to bypass the
	instrument and avoid polluting the instrument pneumatics with dirty part air.
In Relax	The relax timer output goes high during the Relax segment between the two
	tests of the Program Cal routine. It would go high at the end of the first test
	Exhaust segment until the start of the second test Prefill or Fill segment.
	The Relax segment is also functional between tests in the Auto Setup
	routine.

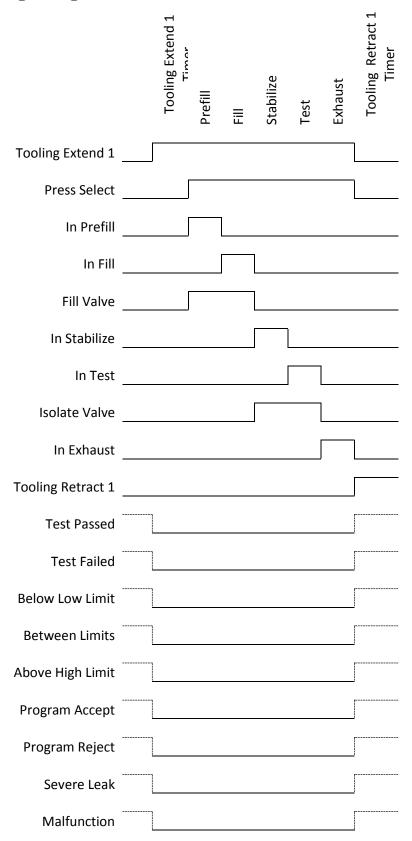
Outputs for Program Calibration

Output	Description
	The Program Cal Mode output goes high whenever the instrument is
Program Cal	performing a Program Cal routine. It goes high at the beginning of the Prefill
Mode	or Fill timer for the first test of the Program Cal routine. It stays high until the
	end of the Exhaust segment for the second test of the Program Cal routine.
	The Program Calibration Master output goes high during the first complete
Prog Cal Master	test of the Program Cal routine starting at the beginning of the Prefill or Fill
1 10g Cai Mastei	segment to the end of the Exhaust segment. This output is used to alert an
	external process that the instrument is in the first test of calibration.
	The Program Calibration Leak Standard output goes high during the second
Prog Cal LS	complete test cycle of the Program Cal routine when the Leak Standard is
	added beginning with the Prefill or Fill segment to the end of the Exhaust
	segment. This output is used to alert an external process that the instrument
	is in the second test of calibration.

8/23/2018 74 www.cincinnati-test.com

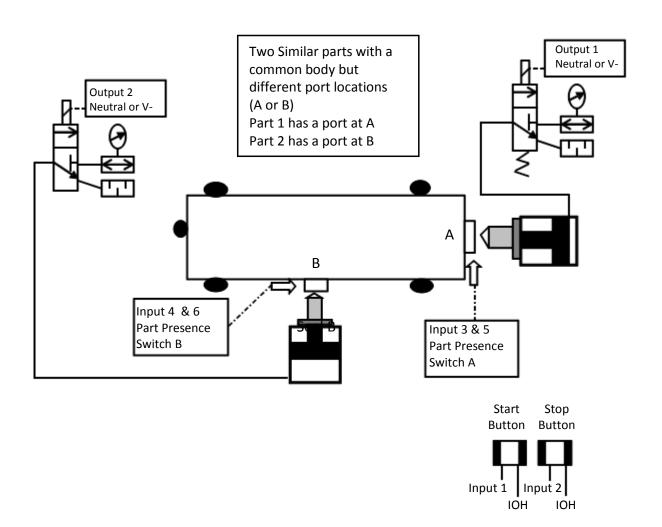
Outputs for Program Results and Test Results

Output	Description
Program Accept	The Program Accept output goes high at the completion of the tooling motion (if tooling is turned on) or at the completion of the Exhaust segment if the test passes.
Program Reject	The Program Reject output goes high at the completion of the tooling motion (if tooling is turned on) if the test fails. Program Rejects also include Severe Leaks when Minimum Pressure is not reached before reaching the Prefill set point or maintained during the Fill or Stabilization segments.
Malfunction	If a test has an error or disruption to the normal process and faults out of cycle before the normal completion, a malfunction will occur. With tooling control if the error or disruption occurs during initial tooling action, the tooling will retract. If the error or disruption occurs during the testing cycle, the test will advance immediately to exhaust and the tooling will retract automatically. The Malfunction output goes high at the end of the completion of the last tooling motion.
Severe Leak	If a test fails to reach Minimum Pressure before reaching the Prefill set point or fails to maintain at least the Minimum Pressure during the Fill and Stabilization segments, the instrument will exhaust the pressure in the part and output Severe Leak high.
Test Passed	Signals the completion of a test that passed at the start of the Exhaust segment. This output stays on until the start of a new test.
Test Failed	Signals the completion of a failed test at the start of the Exhaust segment. This output stays on until the start of a new test.
Below LL	Below Low Limit goes high at the start of Exhaust segment when test results are below the Low Limit set point and stays high until the start of the next test.
Between Lim	Between Limits goes high at the start of Exhaust segment when test results are between the Low Limit and High Limit set points and stays high until the start of the next test.
Above HL	Above High Limit goes high at the start of Exhaust segment when test results are above the High Limit set point and stays high until the start of the next test.


Outputs for Tooling Motion

Output	Description
Tooling Extend 1	This output goes high during the Tooling Extend 1 segment. This option is only available if Tooling is set to "On" or "Disabled".
Tooling Retract 1	This output goes high during the Tooling Retract 1 segment. This option is only available if Tooling is set to "On" or "Disabled".

8/23/2018 75 www.cincinnati-test.com


www.cincinnati-test.com

Timing Diagram

Tooling Example

The example below shows the power and flexibility of the Input and Output functionality. In this example the inputs and outputs are being used to seal two different types of parts. The two different parts have sealing ports in different locations. The part presence sensors select the program in the instrument that controls the proper hardware based on the current part in the sealing nest.

8/23/2018 77 www.cincinnati-test.com

Parameters	Program #1	Program #2
Tooling Motion	On	On
Number of Motions	1	1
Part Present Check	On Start	On Start
Retract on Reject	No	No

Input	Hardware	Program #1	Program #2
Input 1	Start Button	Start Channel	Start Channel
Input 2	Stop Button	Stop/Reset	Stop/Reset
Input 3	Part Select Switch	Program Select B1	Program Select B1
Input 4	Part Select Switch	Program Select B2	Program Select B2
Input 5	Part Presence Sensor A	Part Presence	Constrained
Input 6	Part Presence Sensor B	Constrained	Part Presence

Output	Hardware	Program #1	Program #2
Output 1	Seal A Extend	Tool Extend 1	Constrained
Output 2	Seal B Extend	Constrained	Tool Extend 1

8/23/2018 78 www.cincinnati-test.com

Chapter 12 – EtherNet/IP

This chapter explains the control capabilities of the C28 using the $\it EtherNet/IP^{TM}$ feature. The instrument is able to communicate over Ethernet via TELNET. $\it EtherNet/IP$ is a registered trademark of ODVA, Inc.

Instrument EtherNet/IP Functionality

EtherNet/IP is an industrial communication standard which encompasses the Common Industrial Protocol (CIPTM) deployed over standard Ethernet technology (IEEE 802.3 with TCP/IP). While EtherNet/IP offers various optional topology methods, our implementation utilizes the conventional star with standard Ethernet infrastructure devices.

Features

EtherNet/IP provides the following capabilities:

- Standard set of I/O functionality for machine control
- Modify the current active Program
- User configurable soft I/O functions (16 input, 16 output)
- Test result summary data, and query of full result measurement information
- Latch feature for multi-device communications heartbeat monitoring

EtherNet/IP does **NOT** provide:

- Real-time test data streaming
- Access or modification of instrument settings:
 - o Global configuration
 - o Channel configuration
 - o Program configuration

Compatibility

Provide full communication capabilities over EtherNet/IPTM with any Allen-Bradley ControlLogix® or CompactLogix PLCTM.

Standard Fixed, Defined Inputs/Outputs

Enabling EtherNet/IP allows a set of fixed defined I/O points that are preconfigured are already part of EtherNet/IP structure. The following functionality is accessible by these predefined features.

- Start
- Stop
- Vent/Halt
- Reset
- Instrument Ready
- Result Ready
- Result Error
- Result Unique ID
- Program Accept
- Program Reject
- Malfunction

- Current Program Number
- Change Program Number
- Test Evaluation
- Timestamp
- Latch status

8/23/2018 79 www.cincinnati-test.com

Setting EtherNet/IP User Defined Inputs and Outputs

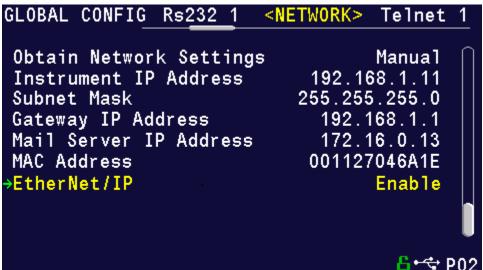
The instrument comes equipped with 16 programmable inputs and 16 programmable outputs. The user can select up to 16 test or program specific I/O that are not in the <u>Standard Fixed</u>, <u>Defined I/O</u> set (described on the first page of this chapter). The following lists of input and output options are the same as the lists of hardware inputs and hardware outputs described in the Programmable I/O Table in the previous chapter titled <u>Chapter 11</u> – Inputs and Outputs.

Input Options
Start Channel
Start Program
Stop/Reset
Hold
Vent/Halt
Program Cal
Open Leak Std
Part Present
SPC Test Part
Program Select B1
Program Select B2
Program Select B3
Program Select B4
Program Select B5
Ext Press Sw
Unassigned

Output Options
Malfunction
Tool Extend 1
In Relax
Program Cal Mode
Program Cal Master
Program Cal Leak Std
Press Select
Prefill
In Fill
Fill Valve
In Stabilize
Isolation Valve
In Test
Test Passed
Test Failed
Bellow LL
Between Lim
Above HL
In Exhaust
Program Accept
Program Reject
Severe Leak
Tool Retract 1
Unassigned

8/23/2018 80 www.cincinnati-test.com

Additional Reference Document


For more information on communicating with any Allen-Bradley ControlLogix or CompactLogix PLC, refer to the **EtherNet/IP AOI Integration Manual**. This document file will be located on the USB flash drive that was provided with the CTS instrument. If you cannot locate this file on the USB drive, it can be emailed to you. Contact the Cincinnati Test Systems Service department. See the back cover of this manual for contact information.

8/23/2018 81 www.cincinnati-test.com

Establishing EtherNet/IP Communication

The communication parameters are located in **Main Menu > Global Config > Network** icon menu. The first step in establishing communication with a PLC is to set **EtherNet/IP** to "Enable".

CAUTION: When changing the EtherNet/IP setting from "Enabled" to "Disabled", all of the user assigned IP Inputs and IP Outputs become Unassigned. This is necessary because when EtherNet/IP is no longer functional, any I/O that may cause program faults must be removed. This includes Part Present, External Pressure Switch, etc. This means that all the user assigned IP Inputs and IP Outputs must be set up again.

8/23/2018 82 www.cincinnati-test.com

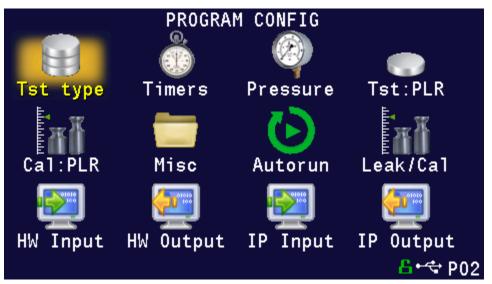
Additional Menus

Turning on this feature will make 2 additional menu icons visible on the Monitor menu screens and 2 additional menu icons visible on the Program Config menu screen.

EtherNet/IP Monitor Screens

Where there were 2 hardware input and output menu icons,

Where there were 2 Monitor menu icons for hardware inputs and outputs., now there are 2 more menu icons to monitor the EtherNet/IP inputs and outputs.

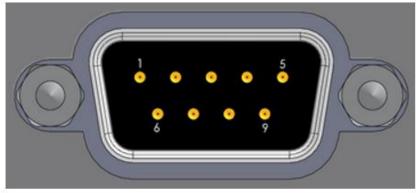


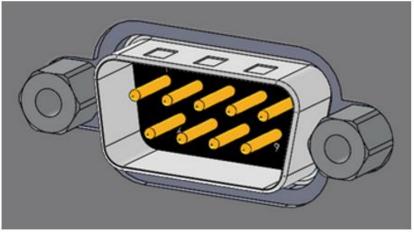
8/23/2018 83 www.cincinnati-test.com

EtherNet/IP Inputs and Outputs

Where there were 2 Program Config menu icons for hardware inputs and outputs, now there will be 2 additional menu icons where the EtherNet/IP inputs and outputs can be set.

8/23/2018 84 www.cincinnati-test.com


Chapter 13 – Communication


The instrument is able to communicate over RS232 and/or Ethernet via TELNET. This chapter explains how to setup communication with the instrument and how to decode the test results output.

The communication parameters are located in Main Menu > Global Config icon.

RS232 Connector Pinout

The pinout for the RS232 connector, located on the side of the I28, is denoted in the diagram below. Pins 1, 4, and 6 are internally connected, but are unused by the instrument.

1	DCD		
2	RX		
3	TX		
4	DTR		
5	Ground		
6	DSR		
7	RTS		
8	CTS		
9	Not Connected		

Establishing RS232 Communication

The RS232 parameters are located in Main Menu > Global Config > RS232 1 or RS232 2. The first step in establishing RS232 communication with the instrument is to set the RS232 1 or RS232 2 Interface parameter to "2-way" communication. Next, set the Baud parameter to match the baud rate of the device that will be communicating with the instrument. The options are: 115200, 57600, 38400, 19200, or 9600 bits per second.

8/23/2018 85 www.cincinnati-test.com

Note: The instrument always uses 8 data bits. The Parity is set to "None". The instrument uses 1 stop bit. The flow control is always set to "None".

Once you have established communication with the desired device you may select whether you want the instrument to "echo" back each character it receives on the TCP/IP 1 communication port. This setting is located in the **Main Menu > Global Config > RS232 1** icon > **RS232 1 Echo**. If the parameter is set to "ON", the instrument will output an echo for each character it receives. If this parameter is set to "OFF", the instrument will not echo anything.

8/23/2018 86 www.cincinnati-test.com

CTS DataHub

The CTS DataHub interface is a custom interface designed to work with a QualityWorX CTS Datahub setup. When **CTS DataHub** is enabled, the QualityWorX CTS Datahub setup will be able to communicate with the C28 instrument to capture streaming and result data. This data is stored on the QualityWorX CTS Datahub setup and allows for engineers and technicians to analyze and report on a collection of data from your production line.

The CTS DataHub parameter is located in **Main Menu > Global Config > Network**. When CTS DataHub is enabled, a new parameter **Configuration Key** will appear. This parameter is currently unused.

To setup QualityWorx CTS Datahub, please refer to the QualityWorX CTS Datahub Getting Started guide.

Establishing Ethernet (TCP/IP) Communication via TELNET

It is highly recommended that you consult with your company's IT department regarding the configuration of placing the instrument on any network. You should get the proper settings for the following parameters from your company's IT department.

The TCP/IP parameters are located in **Main Menu > Global Config > TCP/IP**. The first step in establishing Ethernet communication with the instrument is to set the Obtain Network Settings parameter to DHCP or Manual (static IP address). If set to "DHCP", the Instrument IP Address becomes a read only parameter. If set to "Manual", then you will need to set the Instrument IP Address manually. You may choose to let the instrument initially get its settings with DHCP and then change the setting to Manual to edit the IP Address of the instrument or lock it so that it will not change.

The Mail Server IP Address parameter should be set to the address of the SMTP mail server.

The Subnet Mask parameter will need to be configured next. The most common configuration for this parameter is "255.255.255.0" unless there is more than one subnet in which case a common configuration is "255.255.0.0".

The Gateway IP Address is the default gateway of the network domain.

The MAC Address is the hardware address of the instrument. This number is read-only.

Once you have established communication with the desired device you may select whether you want the instrument to "echo" back each character it receives on the TCP/IP 1 communication port. This setting is located in the **Main Menu > Global Config > Telnet 1** icon. Select **Telnet 1 Echo**. If the parameter is set to "ON", the instrument will output an echo for each character it receives. If this parameter is set to "OFF", the instrument will not echo anything.

8/23/2018 87 www.cincinnati-test.com

Understanding the Header Information

All of the information that the instrument sends over the communication ports is preempted by header information. This data is sent to help parse specific information. This header information is in the format XXYYZZZ H. The header is followed by a Tab as shown in the table below:

Header	Description		
XX	8-Bit CRC in HEX. Used for error checking.		
YY	Sequence Code in HEX. The value increments from 01 to FF. This value can be used as a verification that all data has been received and nothing was missed by the receiving device.		
ZZZ	Data length in HEX.		
	Tab		
Н	Data Type Code. See Data Type Code Table		
	Tab		

Note: For the most up to date <u>Data Type Codes</u>, type "TABLE HEADER" into the instrument using the communication port. The instrument will return a list of about 8 Data Type Codes and descriptions. The table below is an example of the instrument response.

Data Type Code	Description
V	Variable Edit
L	List
M	Message
Q	Result List
T	Streaming Started
S	Streaming Value
X	Streaming Stopped
R	Result

8/23/2018 88 www.cincinnati-test.com

Test Results via RS232 or Ethernet (TCP/IP) communication

Depending on which type of communication is being used, these settings are located in:

Main Menu > Global Config > RS232 1 icon > RS232 1 Results, or

Main Menu > Global Config > RS232 2 icon > RS232 2 Results, or Main Menu > Global Config > Telnet 1 icon > TCP/IP 1 Results.

In order for the instrument to send the test Result Data automatically once the test is complete the parameter is set to "ON". Once this parameter is turned on, the Result Field data parameters show on the screen. Each parameter may be turned on or off depending on the information that is required for to accompany each result. The Test Field parameter may be set to "All Result Information" or "First 2 Test Results". The

"First 2 Test Results" will send the two primary results. The table below shows the format of the Test Result Data.

	Number of			
Parameter	Characters	Format	Example Text	Description of Example
Channel #	4	C##	C01	Channel 1
Port #	3	N#	N1	Port 1
Program #	4	P##	P01	Program 1
Link Information	4		R	No Link
Time	13	HH:MM:SS.XXX	16:15:14.123	16 hrs, 15 mins, 14.123 secs
Date	9	MM/DD/YY	40179	02/01/16
Unique Id	11	##########	0000098353	Unique test number
Program Evaluation	3	#	A	Accept
SPC Flag	2	#	*	SPC Test Data Result
Test Field		Firs	t 2 Test Results	
Test Type	8	###	PLR	Pressure Decay-Leak Std
Test Evaluation	2	#	P	Pass
Test Data 1	22	TDI Data Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit
Test Data 2	22	TDI Data Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit
TAB				Tab
TAB				Tab
CR				Carriage Return
LF				Line Feed

8/23/2018 89 www.cincinnati-test.com

Test Field	All Result Information				
Test Type	8	###	PLR	Pressure Decay-Leak Std	
Test Evaluation	2	#	Р	Pass	
Test Data 1	22	TDI Value Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit	
Test Data 2	22	TDI Value Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit	
Test Data X	22	TDI Value Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit	
TAB				Tab	
TAB				Tab	
CR				Carriage Return	
LF				Line Feed	

Note: For the most up to date <u>Test Data Identifier Codes</u>, type "TABLE VARIABLE" into the instrument using the communication port. The instrument will return a list of about 550 Test Data Identifier Codes and descriptions. See the full list in <u>Appendix D</u>.

Note: For the most up to date <u>Test Evaluation Codes</u>, type "TABLE EVALUATION" into the instrument using the communication port. The instrument will return a list of about 120 Test Evaluation Codes and descriptions. See the full list in <u>Appendix D</u>.

Note: For the most up to date <u>Program Evaluation Codes</u>, type "TABLE RESULT" into the instrument using the communication port. The instrument will return a list of about 12 Data Program Evaluation Codes and descriptions. See the full list in <u>Appendix D</u>.

8/23/2018 90 www.cincinnati-test.com

Streaming Measured Data

The instrument has the ability to stream measured data using either the RS232 or TCP/IP communication port (one or the other, not both simultaneously) in real time while the test is being conducted. This data may be collected and used for analysis. The data is comma delimited. The table below shows the format of the streaming data.

			Example	
Parameter		Format	Text	Description of Example
Channel #	Comma	C##	C01	Channel 1
Chainer #	Delimited	CHH		Chainlei i
Drogram #	Comma	P##	P01	Droomm 1
Program #	Delimited	P##	POI	Program 1
Commont	Comma	XXX	PRF	Prefill Segment
Segment	Delimited			
Test Data	Comma	TDI Value	LR 0.123456	Test Data Identifier - Value -
Test Data	Delimited	Unit	sccm	Unit
TAB				Tab
TAB				Tab
CR				Carriage Return
LF				Line Feed

Note: For the most up to date <u>Segment Codes</u>, type "TABLE SEGMENT" into the instrument using the communication port. The instrument will return a list of about 120 Segment Codes and descriptions. See the full list in <u>Appendix D</u>.

Note: For the most up to date <u>Test Data Identifier Codes</u>, type "TABLE VARIABLE" into the instrument using the communication port. The instrument will return a list of about 550 Test Data Identifier Codes and descriptions. See the full list in <u>Appendix D</u>.

Parsing Data Packets

For users who are trying to parse data packets from the instrument, any line beginning with an asterisk "*" should be parsed to be ignored, as these lines will not have header information to be parsed. An example of these types of lines would be the Root menu displayed at instrument boot.

8/23/2018 91 www.cincinnati-test.com

Reports

The instrument is capable of generating a variety of reports through RS232, Ethernet, Email, or USB memory port located on the front of the unit. The reports available are in the table below.

Report	Description	
Cur Program Res	Reports all of the test results for the current active program. The current	
Cai i iogiami Res	program can be seen in the bottom right hand corner of the display.	
All Results	Reports all of the test results in the instrument memory.	
Chan Last 1000	Reports the last 1000 test results.	
Chan Last 100	Reports the last 100 test results.	
Chan Last 20	Reports the last 20 test results.	
Chan Last Res	Reports the last test result.	
C1 1 1 C C	Reports all of the parameters and their settings within the Global Config	
Global Config	menu.	
Channel Config	Reports all of the parameters and their settings within the Channel Config	
	menu.	
	Reports all of the parameters and their settings within the current active	
Cur Program Config	program. The current program can be seen in the bottom right hand	
	corner of the display.	
Program Config	Reports all of the parameters and their settings within the Program Config	
110814111 0011118	menu.	
Regulator Cal	Reports the Electronic Regulator Calibration data if the instrument is	
Regulator Car	configured with an electronic regulator.	
Transducer Ver	Reports the Transducer Verification data of the last Transducer	
Transducci v ci	Verification conducted on the instrument.	
Transducer Cal	Reports the Transducer Calibration data of the last Transducer Calibration	
Transducer Car	conducted on the instrument.	
Channel Cntrs	Reports all of the counters in the instrument.	

8/23/2018 92 www.cincinnati-test.com

This page is intentionally blank.

8/23/2018 93 www.cincinnati-test.com

Chapter 14 – Security

This chapter explains the instrument security parameters. The Security menu allows flexibility in allowing access or locking functions with a password.

It is located in **Main Menu > Global Config** menu. The **Security** icon may be hidden. To make the Security icon visible, the setting is located in **Main Menu > Global Config > Misc** icon. Select **Edit/View Security**, press **Enter**, use arrows to select "On", and press **Enter**. You will be taken to the Security menu. The Security icon is now visible at the bottom of the Global Config screen.

When the instrument is secured with any of the settings in the Security menu, a password is required to unlock that function of the instrument. The default password is "5555". Anyone with access to this manual will know the default password. To secure the instrument, the password must be changed. Remember to write down the new password. If the new password is forgotten, Cincinnati Test Systems Service department can provide a temporary password to unlock the instrument.

The table below describes the all of the settings in the Security menu.

Parameter	Description	Display User Level
Change Password	Edit allows setting a new password after entering the	Basic
	old password.	Advanced, Admin
Secure Calibration	Applies security to performing a program	Basic
Secure Canbration	calibration.	Advanced, Admin
Secure Select	Applies security to changing test programs by	Basic
Program	pressing Change Program buttons.	Advanced, Admin
Secure Program	Applies security to changing test part parameters.	Basic
Config	rippines security to changing test part parameters.	Advanced, Admin
Secure	Applies security to changing instrument	Basic
Global/Chan	configuration parameters.	Advanced, Admin
Config		
Secure Clear Data	Applies security to clearing test Result Data from	Basic
	instrument.	Advanced, Admin
Secure Reset Cntrs	Applies security to clearing the counter registers	Basic
	from instrument.	Advanced, Admin
Secure Hold	Applies security to hold function.	Basic
Function	,	Advanced, Admin
Secure Reject	Applies security to protect releasing the part on a	Basic
Release	reject. This security option only works if Retract on	Advanced, Admin
	Reject is set to "No" in the program Tooling menu.	riavaneca, rianini
	Applies security to the Monitor screen. If set to	
Secure Monitor	"Yes", the user will be unable to view any other	Basic
Screen	screens other than the last Monitor screen viewed	Advanced, Admin
	before being secured.	
	Allows the user to save a backup and/or restore	Basic
Backup/Restore	various instrument settings. Note: The manifold	Advanced, Admin
	code must match to restore channel settings.	, 11000, 11011111

8/23/2018 94 www.cincinnati-test.com

This page is intentionally blank.

8/23/2018 95 www.cincinnati-test.com

Chapter 15 – Features

This chapter explains essential features of the instrument.

Selecting the Display User Level

There are three user levels in the instrument. This is done to minimize the amount of items shown on the screen for basic users. More advanced users requiring more features may view these by changing this parameter to the appropriate setting. Throughout the manual the parameter tables have denoted the Display User Level required for viewing and editing access. The **Display User Level** is located in **Main Menu > Global Config > Misc** icon. The three levels are "Basic", "Advanced", and "Admin".

Suggestion: Set the Display User Level to the most basic level for your requirements. Parameters may be locked from editing, see Chapter 14 – Security.

Setting the Date & Time

The Date and Time parameters are located in **Main Menu > Global Config > Misc** icon. The date and time are set at the factory. If you are in a different time zone, it may be desirable to change the date and time on the instrument. The date format can be modified with the Date Format parameter. The time format is 24 hour and cannot be changed.

Changing the Instrument Language

The instrument is a multi-language instrument and may be modified. The language setting is located in **Main Menu > Global Config > Misc** icon.

Note: The instrument must be in Advanced or Admin Display User Level to view and modify the instrument Language. To change the Display User Level, see Chapter 15 – Features.

Copy & Paste Programs

To simplify the setup, the instrument comes with the ability to copy all of the parameters from one program to another program. Copy Program is located in the **Main Menu > Program Config > Misc** icon of the program you want to copy. Select the **Copy to Target Prog** parameter and press **Enter**. Increment or decrement the target program number where you want to "paste" the program and press **Enter**. Then, change the **Copy Program** parameter to "Yes" and press **Enter**.

Note: The copied program will overwrite all parameters in the target program. Make sure you want to overwrite this program before executing. If a program exists in the target program number, the instrument will prompt to confirm that you want to continue.

8/23/2018 96 www.cincinnati-test.com

Instrument Backup & Restore

The Backup and Restore function of the instrument is a feature that allows the instrument to create a backup file on a (FAT32) USB memory stick. This can be used to restore the instrument back to its current state. There is no limit to the number of backup files you can have for an instrument. The files are named using the following format: YYMMDD_C28_SERIALNUMBER_NUMBER. Backup files are stored in a subfolder named Backup-Restore.

Note: The NUMBER at the end of the backup filename will increment for each backup of the instrument saved on the same day.

To execute this function, press the USB button on the user interface of the instrument (or press Main Menu > Global Config > USB icon). Move the cursor down to the Backup/Restore parameter. Make sure a USB memory stick is placed in the USB port on the front of the instrument. Press Enter to activate the edit function and select "Backup Instrument". When it is complete a pop-up window will tell you it was successful.

Instrument Cloning

This function should only be executed under the advice of CTS personnel. This feature is used for service and support of our products. It enables a technician to replicate the exact instrument within our facility to help with any questions or concerns. To execute this function, press the USB button on the user interface of the instrument (or press **Main Menu > Global Config > USB** icon). Move the cursor down to the "Backup/Restore" parameter. Make sure a USB memory stick is placed in the USB port on the front of the instrument. Press **Enter** to activate the edit function and select "Instr Clone". When it is complete a pop-up window will tell you it was successful.

LED Lights

The LED Lights on the front of the instrument have no options to set. They are effectively always on. The white LED illuminates during a test. Based on the test result, the red or green LED will illuminate and remain on until the start of the next test, until the part program is changed, or until power is cycled.

Open Internal Leak Standard

The instrument may be configured with one or more internal leak standards. Internal leak standard valves may be manually forced open during a test to simulate a leak in the test circuit. Open Leak Std is located in Main Menu > Channel Config > Leak/Cal icon.

Note: If the instrument is configured with an internal leak standard(s), the instrument automatically introduces the leak standard during the appropriate segments of a Program Cal routine.

8/23/2018 97 www.cincinnati-test.com

Self-Test

The Self-Test diagnostic provides a way to check the integrity of the instrument's pneumatic circuit. This is a great way to isolate a potential leak by allowing the user to verify the instrument is working correctly. By isolating the instrument from the test part and the external tooling and plumbing, this special test will verify that the instrument is performing properly and leak free.

The Self-Test diagnostic is located in Main Menu > Channel Config > Self-Test icon.	The Self-Test diagnostic is !	located in Main Menu >	Channel Config >	Self-Test icon.
--	-------------------------------	----------------------------------	------------------	-----------------

Parameter	Description	Display User Level
Self-Test Pressure	Enter the pressure setting of the pressure source chosen to use for the Self-Test diagnostic routine.	Basic Advanced, Admin
Self-Test Source	Specifies the pressure source to utilize for the Self-Test diagnostic routine.	Basic Advanced, Admin
Self-Test Level	The instrument performs two levels of Self-Test. Level 1 is a general integrity test of the pneumatic circuit. Level 2 is more stringent and should be used when testing for low leak or flow rates.	Basic Advanced, Admin
Start Self-Test	Starts the diagnostic routine.	Basic Advanced, Admin

Note: It is important that the test port is plugged with the Self-Test cap during a Self-Test.

Update Firmware

The instrument is able to update the firmware using the USB port on the front of the instrument. Upon a proper Service request, a firmware update can be sent by an authorized CTS person by email for transfer to a (FAT32) USB memory stick. The file sent will be saved as a ZIP file. Extract the ZIP file to the root directory of the USB memory stick. This step creates the proper folder structure on a USB memory stick. Safely remove the USB memory stick from your computer and insert the stick into the USB port on the front of the instrument. Press the USB button on the user interface. Change the parameter "Update Firmware" to "Yes" to start the update process. The instrument will list all of the firmware version files on the screen. Select which file you want to use. This will start the update process.

Note: If the firmware version is a minor revision all of the parameter settings will be kept the same. However, if the firmware version is a major revision all of the settings will be cleared. See the firmware documentation to determine if the firmware version you are upgrading from will cause the settings to be cleared. To be safe, always perform a Backup Instrument and Instr Clone before updating firmware.

8/23/2018 98 www.cincinnati-test.com

Changing the Functionality of the Prefill Timer

The Prefill timer function is located in **Main Menu > Program Config > Misc** icon. The parameter is called **Prefill Method**. It can be set to "Percent of Fill Time" or "Not to Exceed Time".

When the Prefill Timer is set to "Percent of the Fill Timer", which is the default value, the Minimum Pressure must be met before the value in the Prefill is exhausted. For example, if the Fill Timer is set to 10 seconds and the Prefill Timer is set to 80% then the part must reach Minimum Pressure within 8 seconds. This allows for fixed fill times to be utilized.

When the Prefill Timer is set to "Not to Exceed Timer", the instrument will begin the cycle in the Prefill segment. Once the pressure reaches the Minimum Pressure, the instrument will exit the Prefill segment, regardless of any time remaining, and enter the Fill segment.

Pressure Correction

In several test types the instrument uses pressure correction to enhance the performance of the instrument. **Pressure Correction** is always on and cannot be turned off.

Autorun

Sometimes it is desired to have the instrument cycle automatically without any need for a person to press the Start button or send a start signal using the digital inputs. The Autorun feature is designed to accomplish this. **Autorun** is located in **Main Menu > Program Config > Autorun** icon. The following menu will display on the screen.

Parameter	Description	Display User Level
Autorun Relax	The amount of time the instrument pauses in between cycles.	Advanced, Admin
Autorun Method	There are two options for this parameter. "Standard" which runs a normal leak test every cycle or "LS on 3rd" which opens the internal leak standard (if supplied) every 3rd cycle.	Advanced, Admin
Autorun Cycle Count	The number of cycles left in the Autorun sequence. This parameter is used to determine how many cycles are conducted in an Autorun.	Advanced, Admin
Autorun Enable	When this parameter is set to "Yes" a start command will initiate the Autorun sequence.	Advanced, Admin

8/23/2018 99 www.cincinnati-test.com

Batch Calibration

The Batch Calibration feature allows multiple calibration sequences to be performed. Results are averaged to calculate the final calibration values. The **Batch Calibration** parameter is located in the **Main Menu > Program Config > Leak/Cal** icon and allows for enabling or disabling of batch program calibration mode. When enabled, three more parameters "Batch Layout", "Batch Quantity" & "Average Quantity" are visible to user.

Parameter	Description	Display User Level
Batch Layout	Defines the layout of batch calibration. When Batch Layout is set to "Alternating", which is the default value, the instrument performs the first 'Master' calibration, then the first 'Master+Leak' calibration, then alternates between the two for the remaining batch quantity. When Batch Layout is set to "Grouped", the instrument first performs all 'Master' calibrations, then all 'Master+Leak' calibrations.	Advanced, Admin
Batch Quantity	Defines the number of calibration sequences in the batch. Minimum value is 2 and maximum value is 25.	Advanced, Admin
Average Quantity	Defines the number of calibration sequences utilized to average calibration data out of Batch quantity. The value must be less than or equal to Batch Quantity.	Advanced, Admin

Valve Detection

Valve Detection is located in **Main Menu > Channel Config > Hardware icon** with the options of **Enabled** and **Disabled**. This feature, when enabled, allows the instrument to monitor for the presence of pneumatic valves via electronic load detection.

Note: This parameter is only available for viewing, and the user cannot change the settings.

8/23/2018 100 www.cincinnati-test.com

Setting the Cal Method and Leak Standard Location

The Cal Method parameter is located in the Main Menu > Channel Config > Leak/Cal icon when the Leak Standard is set to "Channel". The Cal Method parameter is located in the Main Menu > Program Config > Misc icon when the Leak Standard is set to "Program".

Select Parameter	Description	Explanation
One Part – Int. LS	Automatic test cycling using Leak Standard located inside the instrument	Automatically tests same non-leaking master part twice; the second time using a calibrated leak standard mounted on the internal manifold.
One Part - Ext LS	Manual testing of same part using Leak Standard provided outside the instrument	Tests same non-leaking master part twice; the second time using calibrated leak standard provided externally from the instrument. The instrument will prompt the operator to attach the leak standard when it is time.
Multi-Part – Int. LS	Manual testing of two parts using a Leak Standard located inside the instrument	Tests two different non-leaking master parts using the calibrated leak standard mounted on the internal manifold. Any tooling must retract between tests to change parts. A Start signal is required either by the user interface or remotely using programmed start test logic to initiate the second test after changing non-leaking master parts.
Multi-Part – Ext LS	Manual testing of two parts using Leak Standard provided outside instrument	Tests two different non-leaking master parts using the calibrated leak standard provided externally from the instrument. Any tooling must retract between tests to change parts. A Start signal is required either by the user interface or remotely using programmed start test logic to initiate the second test after changing non-leaking master part with leak standard.

8/23/2018 101 www.cincinnati-test.com

Chapter 16 – Instrument Calibration

This chapter explains the Set/Span parameters for the pressure transducer and electronic regulator.

Note: Your instrument may not have an electronic regulator.

These parameters are located in **Main Menu > Channel Configuration > Set/Span** icon.

Verifying a Transducer

The transducer verification process is very similar to the calibration process. You must enter the external master gauge value at each point to step through the sequence. You will be prompted to input values so the *Transducer Verification Report* has this data for later review. This feature does not affect the calibration of the instrument.

Note: A Transducer Verification Report may be downloaded from the instrument if desired. See the Reports section on the last page of Chapter 13 – Communication.

Calibrating a Transducer

The transducers have been calibrated at the factory. A calibration of the transducer should be done periodically according to the quality standards at your facility. The instrument is capable of doing a multiple point calibration. The number of points is determined by the user. You may select up to 32 points for calibration. You will need a calibrated master pressure gauge to calibrate the transducer on the instrument. On the Set/Span menu select which transducer you want to calibrate. Press Enter to enable the edit function. Change the value to "Yes". The following menu will display on the screen.

Transducer 1 Cal Menu (Pressure)

Parameter	Description	Display User Level
Number of Points	The number of setpoints to be used for the transducer calibration procedure. Value must be 2 to 32.	Basic Advanced, Admin
Setpoints 2 – 32	The user is able to define the setpoints at which the calibration occurs. The number of setpoints shown is based on the number of points selected in the parameter above.	Basic Advanced, Admin
Linearity Limit	The maximum allowed linearity variance for a successful calibration.	Basic Advanced, Admin
Start Calibration	Commences the calibration procedure. A wizard will walk you through the calibration process.	Basic Advanced, Admin

Note: A Transducer Calibration Report may be downloaded from the instrument if desired. See the Reports section on the last page of Chapter 13 – Communication.

8/23/2018 102 www.cincinnati-test.com

Calibrating an Electronic Regulator

The electronic regulator has been calibrated at the factory. The instrument is capable of doing a multiple point calibration. The number of points is determined by the user. You may select up to 20 points for calibration. You will need a calibrated master pressure gauge to calibrate the electronic regulator on the instrument. On the Set/Span menu select which electronic regulator you want to calibrate. Press Enter to enable the edit function. Change the value to "Yes". The following menu will display on the screen.

Parameter	Description	Display User Level
Number of Points	The number of setpoints to be used for the Electronic Regulator calibration procedure. Value must be 2 to 20.	Basic Advanced, Admin
Low Limit Voltage	The user is able to define the low voltage for the calibration process.	Admin
High Limit Voltage	The user is able to define the high voltage for the calibration process.	Admin
Start Calibration	Commences the calibration procedure. A wizard will walk you through the calibration process.	Basic Advanced, Admin

Note: The Low Limit Voltage and High Limit Voltage values are disregarded if both are set to "0" (zero is the default setting). You should only change these values if the instrument is not able to automatically analyze the electronic regulator range and perform a proper calibration.

Note: The electronic regulator can remain active in between instrument test cycles or it can be set to "Idle". This parameter is edited by going to Channel Config and selecting the Hardware icon. The parameter is called "E-Regulator Rest" and is available in Basic Display User Level. To change the Display User Level, see Chapter 15 – Features.

Note: An Electronic Regulator Calibration Report may be downloaded from the instrument if desired. See the Reports section on the last page of Chapter 13 – Communication.

8/23/2018 103 www.cincinnati-test.com

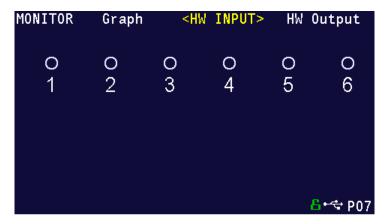
Chapter 17 – Monitor Screen Examples


This chapter is a quick reference for the screens that display at power on and when running the various tests established for your requirements.

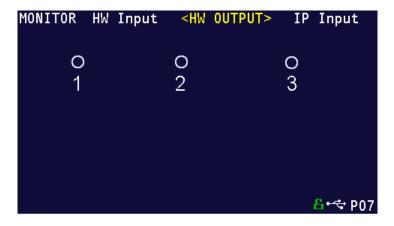
Monitor Screen Examples

These screens are available by using the right arrow on the Arrow/Enter Navigation buttons.

Screen 1: Monitor 1 highlights the numerical pressure reading:

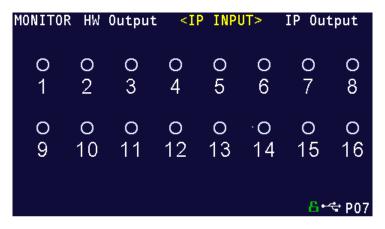


Screen 2: Monitor 2 highlights the location of the reading from the Min to the Max allowable pressure:



8/23/2018 104 www.cincinnati-test.com

Screen 3: Hardware Input highlights which of the possible 6 inputs are engaged:



Screen 4: Hardware Output highlights which of the possible 3 outputs are engaged:

8/23/2018 105 www.cincinnati-test.com

Screen 5: IP Input highlights which of the possible 16 inputs are engaged:

Screen 6: IP Output highlights which of the possible 16 outputs are engaged:

MONITOR	ΙP	Input	<ip< th=""><th>OUTP</th><th>UT></th><th>Monit</th><th>or1</th></ip<>	OUTP	UT>	Monit	or1
0	O	O	O	O	O	0	O
1	2	3	4	5	6	7	8
O	0	0	0	0	0	0	O
9	10	11	12	13	14	15	16
						B •	⇔ P07

8/23/2018 106 www.cincinnati-test.com

This page is intentionally blank.

8/23/2018 107 www.cincinnati-test.com

<COUNTERS>

2

1

0.01570 Apsig

0.00000 Apsig

0.00386 Apsig

<u>-6</u> •< ₽01

Chapter 18 – Results Screen Examples

RESULT DATA <u>Sta</u>ts

Cycles Since New

Accept Average Reject Average

Accept Std Dev

Sample Size

This chapter is a quick reference for the screens that display when running the various tests established for your requirements. These are examples; your screens will display similar but different data.

Result Data Screens

Counters Screen

Accept Cycles Reject Cycles 0 Malfunction Cycles 100.00 % Accept Percentage Reject Percentage 0.00 % Clear Prog Counters No Clear Chan Counters No Clear Chan Results No 🔓 •< ₽01 RESULT DATA Results <STATS> Counters Stat History Length

Results Screen

Stats Screen

```
RESULT DATA Counters
                        <RESULTS>
                                     Stats
 P01: 01/09
                  09:07:19
                                     ACCEPT
                              0.01143∆psig
  PL0
       P
              99.844 psig
 P01: 01/09
                  09:06:52
                                     ACCEPT
              99.649 psig
  PL0
                              0.02032∆psig
 P01: 01/09
                  09:06:09
                                     ACCEPT
  PL0
              99.264 psiq
                              0.01392∆psiq
                   14:38:24
 P01: 01/06
                                     ACCEPT
              98.749 psig
  PL0
      P
                              0.01715\psig
JP00: 01/06
                   14:36:02
                                     ACCEPT
                                     🔓 • 🗢 P01
```

This page is intentionally blank

8/23/2018 109 www.cincinnati-test.com

Appendix A – Messages & Error Codes

This appendix is a quick reference for the messages and error codes that display on the screen and through the communication ports.

Test Messages & Errors

Note: For the most up to date <u>Test Messages and Error Codes</u> type "TABLE EVALUATION" into the instrument using the communication port. The instrument will return a list of Data Type Codes and Descriptions. (This table contains the same list of codes found in the 3rd table of Appendix D.)

Message	Code	Description	Corrective Actions
Program Accept	A	Program evaluation was successful, for multiple tests – all tests passed.	
Auto Setup Seq Complete	AC	The Auto Setup Sequence is complete.	
Program Calibration Failed	AF	The test type is one that is capable of conducting a program calibration and this sequence was not successful.	
Master Part Complete	AM	The test type is one that is capable of conducting a program calibration. The first phase of the sequence is complete.	
Program Calibration Passed	AP	The test type is one that is capable of conducting a program calibration and this sequence was successful.	
Error: Anti-tie Down	АТ	The two inputs (Start and Common) are not held high during all of the "extend" tooling motions. There is no resultant output.	The two inputs must go high within 0.05 seconds and be held high until the end of all extend tooling motions.
Error: Barcode Req to Start	BR	The instrument was expecting a barcode value to be received over the RS232 port. The Barcode Required parameter was set to "Yes", which requires a barcode before a start command is enabled.	Check barcode reader wiring and functionality. Make sure the Baud Rates are set properly within the instrument.

8/23/2018 110 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Master+Leak Loss <master Loss</master 	C1	During the Program Cal routine, the instrument measured a greater pressure loss for the master part by itself than for the master part with the leak in the second test. This results in a Malfunction.	Increase the stabilization and possibly test time. Verify the leak standard.
Master Part Loss>Max Mstr+Leak Loss	C2	The pressure loss during the first test of the Program Cal routine on the master part exceeded the Max Mstr+Leak Loss set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend stabilization timer. Check that Max Mstr+Leak Loss was correctly set.
Master +Leak Loss>Max Mstr+Leak Loss	С3	The pressure loss during the second test of the Program Cal routine on the master part exceeded the Max Mstr+Leak Loss set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend stabilization timer. Check to leaks about leak standard. Check that Max Mstr+Leak Loss was correctly set.
Master Flow>Max M+L Flow	C4	The flow value during the first test of the Program Cal routine on the master part exceeded the Max Mstr+Leak Flow set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check that Max Mstr+Leak Flow was correctly set.
Master Flow <min Master Flow</min 	C5	The master flow value was less than the Min Master Flow setpoint.	Check that the Min Master Flow setpoint was set correctly. Verify the test line is connected to the test port and not the Self-Test cap.
Master+Leak Flow>Max M+L Flow	C6	The flow value during the second test of the Program Cal routine on the master part exceeded the Max Mstr+Leak Flow set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check the leak standard. Check that Max Mstr+Leak Flow was correctly set.
Master Flow>Max Master Flow	C7	The flow value during the first test of the Program Cal routine on the master part exceeded the Max Master Flow set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check that Max Master Flow was correctly set.

8/23/2018 111 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Master+Leak Flow <master Flow</master 	C8	The flow value during the second test of the Program Cal routine on the master part was less than the measured Master Flow value. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check the leak standard. Check that Max Master Flow was correctly set.
Master Loss <min Master Loss</min 	С9	The pressure loss reading during the first test of the Program Cal routine for a pressure decay test was less than the Min Master Loss set point. This results in a Malfunction.	Check for blockage in the test line of part.
Cal Program Accept	CA	The Program Calibration was successful.	
Calculation Error	CE	This result occurs from illegal program configurations, calculation errors when trying to convert vacuum pressures to positive pressure readings, and other occurrences.	
Cal Required - Limit Exceeded	CF	Not Used.	
Min Perf Factor Error	СМ	The Performance Factor calculated at the end of Program Cal exceeds the Minimum Performance Factor set in the Test Factors.	Check that the Minimum Performance Factor was correctly set. Increase Stabilize and Test timers.
Calibration Required- Parameters Changed	СР	The stabilization or test timers, target pressure, Leak Std Flow, or Leak Std Pressure have been changed since the last calibration and therefore the part needs to be recalibrated. There is no output resultant.	Recalibrate the instrument for this program.
Cal Program Reject	CR	The Program Calibration was not successful.	
DP Transducer Fault	DF	Not Used.	

8/23/2018 112 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
DP Transducer Over Range	DO	Not Used.	
DP Transducer Zero Bad	DZ	Not Used.	
Elec Regulator Cal Complete	EC	The Electronic Regulator Calibration was successful.	
Elec Regulator Cal Error	EE	The Calibration was not successful.	Check the wiring of the electronic regulator. Check that the entry of each pressure calibration point was correct.
Part Evac Fault	EF	Not Used.	
Prog Error	EP	There was an error with the program. Please contact the CTS Service department.	
System Error - Service Req	ER	There was an error with the instrument. Please contact the CTS Service department.	
Flow Transducer Over Range	FO	The flow transducer measured a value out of its range. The instrument stopped the test sequence to prevent damage to the sensor.	
Error: Excessive Flow	FX	The flow transducer measured a value out of its range. The instrument stopped the test sequence to prevent damage to the sensor.	
Flow Transducer Zero Bad	FZ	The flow transducer was not sending the proper voltage. The instrument checks to make sure that the flow transducer is within range before the test sequence begins.	Check the flow transducer wiring. If this happens multiple times, replace the flow transducer.
Helium Background Fault	HF	Not Used.	
Invalid Calibration Data	ID	The calibration data has been corrupted or not properly entered. Please calibrate the unit again.	
I/O Fault	IF	Not Used.	
Invalid I/O Configuration	Ю	Not Used.	

8/23/2018 113 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Invalid Program Selected	IP	The program selected does not exist or has not been configured.	Check BCD Input programming.
Error: Duplicate Target Link	LD	The same child program cannot be in the same link structure. If it is desired to conduct the same test twice you will need to copy the program.	
Master Loss>Max Master Loss	L0	The pressure loss reading during the first test of Program Cal cycle was greater than the Max Master Loss setpoint. This results in a Malfunction.	
Master+Leak Loss <min loss<="" master+leak="" td=""><td>L1</td><td>The pressure loss value during the second sequence of Program Cal on the master part was less than the Min Master +Leak Loss setpoint. This results in a Malfunction</td><td></td></min>	L1	The pressure loss value during the second sequence of Program Cal on the master part was less than the Min Master +Leak Loss setpoint. This results in a Malfunction	
Leak Loss <min Leak Loss</min 	L2	Measured Leak Loss of Program Cal was less than Min Leak Loss setpoint. This results in a Malfunction.	
Leak Loss >Max Leak Loss	L3	Measured Leak Loss of Program Cal was greater than Max Leak Loss setpoint. This results in a Malfunction	
Leak Std Select Config Error	LE	Configuration Error. The instrument was not configured properly.	
Error: Link Execution Loop	LL	There was an error in the Linking Execution.	Check programming of the Parent/Child Structures.
Error: No Links Defined	LN	The instrument was expecting a link that did not exist.	
Error: Dissimilar Link Order	LO	When the instrument conducts a Program Calibration sequence on linked programs, the links must execute in the same order for both the first and second sequences for Program Calibration.	
Error: Link Program is Parent	LP	A Parent Program may not be a link target.	
Error: Link Prog Undefined	LU	The linked program is undefined.	

8/23/2018 114 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Error: Part Mark Fault	MF	The part mark feedback input did not receive the input in time.	Check operation of the part marker. Check wiring of the feedback input. Check wiring of the valve to fire the part marker.
No Event Occurred	NE	In a test that is looking for an event, this is the result when one does not occur.	
Above Target Pressure	PA	The instrument will stop conducting a test if the pressure rises above the target pressure window setting.	Check pressure regulator setting, cut seals, bad parts, or tooling control pressure by testing with master part.
Below Target Pressure	PA	The instrument will stop conducting a test if the pressure drops below the target pressure window setting.	Check pressure regulator setting, cut seals, bad parts, or tooling control pressure by testing with master part.
Part Not Changed	РС	The present input signal did not go low between tests to indicate that the part was removed from the fixture after the last test. This results in a Malfunction.	Remove the part after each test.
Part Configuration Error	PE	There was an error in the way the program was configured.	
Part Not Full	PF	This is an error in the Auto Setup Sequence that can occur if the instrument fails to fill the part to the desired pressure.	
Test Pressure High	РН	Test pressure was above the Maximum Pressure during fill or stabilization cycles resulting in a Malfunction.	Check pressure regulator setting and tooling control pressures
Test Pressure Low	PL	Test pressure was below Minimum Pressure during fill cycle. This results in a severe leak.	
Error: Part Not Present	PP	The part present input is set for the active program and the input was not received.	Check the part presence sensor and input wiring

8/23/2018 115 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Part Not Stabilized	PS	This is an error in the Auto Setup Sequence that can occur if the instrument fails to stabilize the part.	
Part Not Exhausted	PX	This is an error in the Auto Setup Sequence that can occur if the instrument fails to exhaust the part.	
Sequence Complete	QC	Sequence Complete	
Program Reject	R	Program evaluation was not successful, for multiple tests – if any test fails, the part is rejected	
Part Reject - Level 1	R1	Not Used.	
Part Reject - Level 2	R2	Not Used.	
Part Reject - Level 3	R3	Not Used.	
Source Pressure Exceeded	RX	The source pressure set by the factory on the hardware configuration menu was exceeded.	
Stop Button Pressed	SB	The stop button or input was received.	
Start Common Input Low	SC	Not Used.	
Pressure Select Config Error	SE	Configuration Error. The instrument was not configured properly.	
Self-Test Failed	SF	The Self-Test failed	Make sure the test line was removed and the test port plugged before the test was conducted. One of the internal valves may be leaking.
Error: Stop Input High	SH	The instrument cannot start a test if the Stop input is high.	
Stop Input Received	SI	Stop Input Received.	
Severe Leak	SL	Severe Leak indicates the test process did not achieve Minimum Pressure before reaching the Prefill set point or failed to maintain Minimum Pressure during fill or Stabilization timers. This results in a Program Reject.	Check pressure regulator setting, cut seals, bad parts, or tooling control pressure by testing with master part
Self-Test Passed	SP	Self-Test process indicates no internal leak.	

8/23/2018 116 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
System Pressure Exceeded	SX	The system pressure of the unit was exceeded.	Check the pressure source and regulators
Tooling Not Reset	TE	If a tooling error occurs involving any motions, there will be a tooling error. Before the start of the next test, the tooling needs to be reset by the Stop/Reset input. This results in a Malfunction.	Push the Stop/Reset Input and possibly Common to return the tooling to the Start position.
Error: Two- Input Req to Start	TI	Both Start Test and Common must go high to start a test.	
Test Port Select Config Error	ТР	The instrument configuration is not correct.	
Error: Tooling not Retracted	TR	The instrument may not start a sequence if all of the tooling is not retracted.	
Tooling Reset	TS	Most tooling errors or some test errors may require a tooling reset with the Stop/Reset input. After completion of the reset, this confirmation message is displayed.	
Error: Tooling not Extended	TX	If the instrument is configured for tooling feedback this error will occur if the tooling feedback input is not received within the time allocated.	Check feedback sensor and input wiring. Make sure the tooling motion feedback timer is set properly.
Vent Part Reset Tooling	VR	Message sent when retain part pressure and tooling are both configured to be used. This message is sent upon a reset.	
Transducer Cal Complete	XC	The transducer calibration is complete and was successful.	
Transducer Cal Error	XE	There was an error when trying to calibrate the transducer.	Check transducer wiring
Pressure Transducer Fault	XF	Not used.	
External Switch did not go high	ХН	The External Pressure Switch input did not go high before the end of the fill timer. This results in a Malfunction.	Check the pressure switch. Make sure that the path to the pressure switch is not blocked.
External Switch did not go low	XL	The External Pressure Switch input did not go low between tests. This results in a Malfunction.	Check pressure switch to make sure it is functioning.

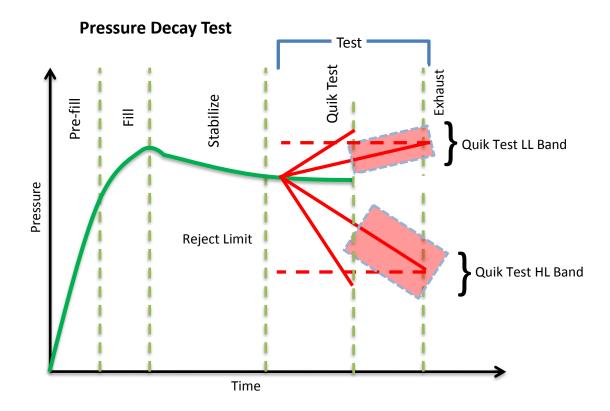
8/23/2018 117 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Transducer Over Range	XO	During the testing process the pressure exceeded the range of the transducer. This results in a Malfunction.	Check the pressure regulator setting
Transducer Verify Complete	XV	The transducer verification sequence is complete.	
Transducer Zero Bad	XZ	The pressure transducer's atmospheric pressure reading at the beginning of the testing cycle is outside of tolerance. This results in a Malfunction.	Perform transducer calibration routine in Self-Test

8/23/2018 118 www.cincinnati-test.com

This page is intentionally blank.

8/23/2018 119 www.cincinnati-test.com


Appendix B – Quik Test

This appendix explains the theory and parameters for reducing the test time for obviously good and obviously bad parts, without sacrificing the accuracy for marginal parts. This capability is called Quik Test in the instrument. Quik Test is available in the Pressure Decay-Leak Std test type that conducts a Program Calibration using a leak standard.

How it works

Most manufacturing processes produce the desired quality of product a high majority of the time. These parts easily pass the leak test being performed on them. Conversely, most defective parts reject by a wide margin. Quik Test monitors the pressure or flow signal during the test and ends the test early for parts that easily pass or easily reject. Any marginal parts that are within the parameters set by the Quik Test HL (High Limit) Band and Quik Test LL (Low Limit) Band will utilize the entire Test time to ensure the accuracy of the result.

At the desired time in the Test sequence determined by the Quik Test Percent parameter the instrument calculates the projected leak rate and compares it with the Quik Test Low Limit and High Limit Bands. If the projected leak rate is within either of these two bands, the test continues to the end of the test timer. If the instrument's projected leak rate is outside of these bands, it will stop the test, output the results according to the Test Evaluation criteria, and display the projected leak rate.

8/23/2018 120 www.cincinnati-test.com

The prior chart shows the master part curve, the Low Limit with its Quik Test LL band limit, and the High Limit with its Quik Test HL band limit. If the pressure loss is within either the Quik Test LL band or Quik Test HL band at the QT% of Test Timer, the test will continue and complete the entire test cycle. If the results are outside the limit bands at the QT% of Test Timer, the test will stop and the test result will reflect the Test Evaluation criteria. Setting narrow bands about the Low Limit and High Limit is a very aggressive approach that will greatly limit the number of tests that run to the end of the test timer. Set wider bands as a more conservative approach to Quik Test.

An initial analysis of Quik Test should be performed before actually implementing this feature by establishing the "QT Test Timer" at 10, 25, 50, 75, or 90% and setting "Quik Test" to OFF. A Program Calibration must be performed after setting the "Quik Test Timer" to measure the typical leak response curve for the test. Test production parts over a reasonable time (up to 1000 parts in various production conditions). The instrument projects a leak rate at the Quik Test Timer and then completes the full test cycle and calculates the leak rate for the complete test. The instrument stores the test results that include both the actual complete test result and a projected test result based on the Quik Test measurement. By comparing the two leak rate results, a percent of error for the Quik Test feature can be calculated. If the results are satisfactory, the Quik Test feature can be implemented by setting appropriate High Limit and Low Limit Bands based on the test comparison and enabling Quik Test. This feature will save the time difference between a full test time and the Quik Test Time for almost all of the accepted parts and most of the rejected parts. If the results are not consistent to each other, test further by increasing the Quik Test Timer, re-calibrate the instrument, and compare the results again.

Test Parameters

The Quik Test parameters menu is located in Main Menu > Program Config > TST:*** icon.

TST Parameter	Description	Display User Level
Quik Test Enable	Activates Quik Test.	Advanced, Admin
Quik Test Timer	Defines the time as a percent of the Test sequence when the Quik Test function result is calculated.	Advanced, Admin
Quik Test LL Band	The leak (flow) rate band around the Low Limit within which the tests will continue to completion. This value is the amount above and below the nominal. For example, if this value is set to 0.5 scc/m and the Low limit is set to -5.0 scc/m, the entire Quik Test LL Band is -4.5 to -5.5 scc/m.	Advanced, Admin
Quik Test HL Band	The leak (flow) rate band around the High Limit within which the tests will continue to completion. This value is the amount above and below the nominal. For example, if this value is set to 1.0 scc/m and the High limit is set to 10.0 scc/m, the entire Quik Test LL Band is 9.0 to 11.0 scc/m.	Advanced, Admin

8/23/2018 121 www.cincinnati-test.com

Appendix C – Environmental Drift Correction

This appendix explains the theory and parameters for implementing the Environmental Drift Correction feature.

How it works

The environmental drift correction routine helps to maintain the calibration of the system by continuously monitoring and calculating a correction factor for changes in the test conditions. This routine dynamically compensates for slow changes in the test environment such as room temperature changes, part temperature changes, test air temperature changes, part elasticity changes, part absorption characteristics, etc. These factors influence the dynamics of how the test part reacts to the testing process and the determination of the leak rate. "Environmental Drift Correction" defines how wide of a band around the Master Part Loss or Master Part Flow value will be considered as normal variations in flow rate for a non-leaking part. The "Environmental Drift Correction" (+EDC %) is based on High Limit. The instrument continuously calculates a running average of test results that fall within the band (EDC %) about the original non-leaking master part curve. It corrects each future result by the calculated drift determined from previous test results. The drift value is calculated as shown.

Environmental Drift Correction =
$$\frac{\Sigma n \text{ Flow}}{n}$$
 - "Master Part Flow"

Typical settings for "Environmental Drift Correction" are 10%, 25%, 50%, 75%, and 90%. The sample size is set as EDC quantity (3 or greater). Flexible parts require a greater "Environmental drift correction" than rigid parts.

The "Environmental Drift Correction" effectively defines how much shift can occur. This limits the routine from continuing to compensate for possible growing leaks in the seal or test pneumatics.

8/23/2018 122 www.cincinnati-test.com

The EDC parameters menu is located in **Main Menu > Program Config > TST:***** icon.

TST:*** Parameter	Description	Display User Level
EDC Enable	Enables Environmental Drift Correction	Advanced, Admin
EDC Percentage	Defines the band about the master part curve where test values are saved to calculate EDC drift. Set as a percentage of the High Limit parameter.	Advanced, Admin
EDC Quantity	Defines the number of test results within the EDC band used to calculate drift.	Advanced, Admin

Environmental Drift Correction (EDC) will reset based on any of the following conditions:

- 1. Instrument power-cycle (due to limitations in instrument non-volatile storage)
- 2. Change of any variables that affect EDC calculations:
 - a. EDC Configuration change (modification the variables: *EDC Enabled*, *EDC Percentage*, or *EDC Quantity*)
 - b. Test Limit change (modification of the variable: *High Limit /Loss/Leak/Rate/*)
- 3. Program idle time-out: 1 hour elapsed since last test on matching program number

Note: The act of changing the selected active program <u>does not</u> reset the Environmental Drift Correction feature. A user can switch between multiple programs (EDC data is stored per program), as long as the amount of time from the last time the similar program number was run does not exceed the 1-hour time-out.

8/23/2018 123 www.cincinnati-test.com

Appendix D – Communication Code Tables

This appendix lists the codes that are referenced in the notes of <u>Chapter 13</u> – Communication.

Each table can be generated within the communications interface by providing the associated command denoted.

Data Type Codes or Header Codes

type "TABLE HEADER"

	<i>ype</i> 1112 = 11212 = 11		
	Data Type Code	Description	
1	V	Variable Edit	
2	L	List	
3	M	Message	
4	Q	Result List	
5	Т	Streaming Started	
6	S	Streaming Value	
7	X	Streaming Stopped	
8	R	Result Value	

Program Evaluation Codes

type "TABLE RESULT"

	Program Evaluation Code	Description
1	Р	TEST PASSED
2	F	TEST FAILED
3	E	TEST ERROR
4	S	TEST SKIPPED
5	X	TEST FAILED - LEVEL 1
6	Υ	TEST FAILED - LEVEL 2
7	Z	TEST FAILED - LEVEL 3
8	M	AUTO-CAL MASTER PART
9	L	AUTO-CAL LEAK STANDARD PART
10	N	TEST FAILED - NO EVENT
11	С	TEST COMPLETE

8/23/2018 124 www.cincinnati-test.com

Test Evaluation Codes

type "TABLE EVALUATION"

	Test Evaluation Code	Description
1	Α	PROGRAM ACCEPT
2	AC	AUTOSETUP SEQ COMPLETE
3	AF	PROGRAM CALIBRATION FAILED
4	AL	MASTER+LEAK PART COMPLETE
5	AM	MASTER PART COMPLETE
6	AP	PROGRAM CALIBRATION PASSED
7	AT	ERROR: ANTI-TIE DOWN
8	BR	ERROR: BARCODE REQ TO START
9	C1	MASTER+LEAK LOSS <master loss<="" td=""></master>
10	C2	MASTER LOSS>MAX M+L LOSS
11	C3	MASTER+LEAK LOSS>MAX M+L LOSS
12	C4	MASTER FLOW>MAX M+L FLOW
13	C5	MASTER FLOW <min flow<="" master="" td=""></min>
14	C6	MASTER+LEAK FLOW>MAX M+L FLOW
15	C7	MASTER FLOW>MAX MASTER FLOW
16	C8	MASTER+LEAK FLOW <master flow<="" td=""></master>
17	C9	MASTER LOSS <min loss<="" master="" td=""></min>
18	CA	CAL PROGRAM ACCEPT
19	CE	CALCULATION ERROR
20	CF	CAL REQUIRED - LIMIT EXCEEDED
21	СН	CHARGE PRESSURE HIGH
22	CL	CHARGE PRESSURE LOW
23	CM	MIN PERF FACTOR ERROR
24	СР	CAL REQUIRED - PARAM CHANGED
25	CR	CAL PROGRAM REJECT
26	СХ	CHAMBER EVACUATION FAULT
27	DF	DP TRANSDUCER FAULT
28	DO	DP TRANSDUCER OVER-RANGE
29	DZ	DP TRANSDUCER ZERO BAD
30	EC	ELEC REGULATOR CAL COMPLETE

	Test Evaluation Code	Description
31	EE	ELEC REGULATOR CAL ERROR
32	EF	PART EVAC FAULT
33	EI	ERROR: INSTRUMENT NOT ENABLED
34	EP	PROG ERROR
35	ER	SYSTEM ERROR - SERVICE REQ
36	FC	CHAMBER PRESSURE HIGH
37	FO	FLOW TRANSDUCER OVER-RANGE
38	FX	ERROR: EXCESSIVE FLOW
39	FZ	FLOW TRANSDUCER ZERO BAD
40	HF	HELIUM BACKGROUND FAULT
41	IC	INVALID INPUT CONFIGURATION
42	ID	INVALID CALIBRATION DATA
43	IE	INPUT INITIAL STATE ERROR
44	IF	I/O FAULT
45	10	INVALID I/O CONFIGURATION
46	IP	INVALID PROGRAM SELECTED
47	IR	CHAMBER RISE INPUT FAULT
48	IS	ISOLATION FAILURE
49	IX	CHAMBER CROSSOVER INPUT FAULT
50	LO	MASTER LOSS>MAX MASTER LOSS
51	L1	MASTER+LEAK LOSS <min loss<="" m+l="" td=""></min>
52	L2	LEAK LOSS <min leak="" loss<="" td=""></min>
53	L3	LEAK LOSS>MAX LEAK LOSS
54	L4	MASTER+LEAK FLOW <min flow<="" m+l="" td=""></min>
55	L5	LEAK FLOW <min flow<="" leak="" td=""></min>
56	L6	LEAK FLOW > MAX LEAK FLOW
57	LD	ERROR: DUPLICATE TARGET LINK
58	LE	LEAK STD SELECT CONFIG ERROR
59	LL	ERROR: LINK EXECUTION LOOP
60	LN	ERROR: NO LINKS DEFINED

8/23/2018 125 www.cincinnati-test.com

type "TABLE EVALUATION"

typ	THE	EVALUATION
	Test Evaluation Code	Description
61	LO	ERROR: DISSIMILAR LINK ORDER
62	LP	ERROR: LINK PROG IS PARENT
63	LU	ERROR: LINK PROG UNDEFINED
64	MC	MASS SPEC CONTAMINATION
65	MF	ERROR: PART MARK FAULT
66	MS	MAN FILL SWITCH
67	NE	NO EVENT OCCURRED
68	OC	ATMOSPHERIC PRESSURE COMPLETE
69	OE	ATMOSPHERIC PRESSURE ERROR
70	PA	ABOVE TARGET PRESSURE
71	РВ	BELOW TARGET PRESSURE
72	PC	ERROR: PART NOT CHANGED
73	PE	PROGRAM CONFIGURATION ERROR
74	PF	PART NOT FULL
75	PH	TEST PRESSURE HIGH
76	PL	TEST PRESSURE LOW
77	PP	ERROR: PART NOT PRESENT
78	PR	POWER RESET
79	PS	PART NOT STABILIZED
80	PV	PROCESS FAULT
81	PX	PART NOT EXHAUSTED
82	QC	SEQUENCE COMPLETE
83	R	PROGRAM REJECT
84	R1	PART REJECT - LEVEL 1
85	R2	PART REJECT - LEVEL 2
86	R3	PART REJECT - LEVEL 3
87	RF	CHAMBER RISE FAULT
88	RH	PRE-PRESSURE HIGH
89	RL	PRE-PRESSURE LOW
90	RX	SOURCE PRESSURE EXCEEDED

	Test Evaluation Code	Description
91	S1	LD ZERO < MIN
92	S2	LD ZERO > MAX
93	S 3	LD LEAK < MIN
94	S4	LD LEAK > MAX
95	SB	STOP BUTTON PRESSED
96	SC	START COMMON INPUT LOW
97	SE	PRESSURE SELECT CONFIG ERROR
98	SF	SELF-TEST FAILED
99	SH	ERROR: STOP INPUT HIGH
100	SI	STOP INPUT RECEIVED
101	SL	SEVERE LEAK
102	SM	SNIFFER MODE MISMATCH
103	SN	ERROR: SNIFFER NOT READY
104	SP	SELF-TEST PASSED
105	SR	SNIFFER READY INPUT FAULT
106	ST	SNIFFER TYPE MISMATCH
107	SU	SNIFFER UNITS MISMATCH
108	SX	SYSTEM PRESSURE EXCEEDED
109	ТВ	T-GAS BACKGROUND FAULT
110	TC	T-GAS CHAMBER CLEANUP FAULT
111	TE	ERROR: TOOLING NOT RESET
112	TF	T-GAS PART FILL FAULT
113	TI	ERROR: TWO-INPUT REQ TO START
114	TL	T-GAS LEAK STD FAULT
115	TM	T-GAS MIN LEAK RATE FAULT
116	TP	TEST PORT SELECT CONFIG ERROR
117	TR	ERROR: TOOLING NOT RETRACTED
118	TS	TOOLING RESET
119	TX	ERROR: TOOLING NOT EXTENDED
120	VF	VALVE LOAD FAULT

8/23/2018 126 www.cincinnati-test.com

type "TABLE EVALUATION"

type		VALUATION
	Test Evaluation Code	Description
121	VR	VENT PART RESET TOOLING
122	WA	WEIGHT ABOVE MAX
123	WB	WEIGHT BELOW MIN
124	WC	SCALE CONFIG ERROR
125	WH	SCALE WEIGHT HIGH
126	WL	SCALE WEIGHT LOW
127	WR	SCALE NOT READY
128	WS	SCALE NOT STABLE
129	XC	TRANSDUCER CAL COMPLETE
130	XE	TRANSDUCER CAL ERROR
131	XF	PRESSURE TRANSDUCER FAULT
132	XH	EXT SWITCH DID NOT GO HIGH
133	XL	EXT SWITCH DID NOT GO LOW
134	ХО	TRANSDUCER OVER-RANGE
135	XP	EXTERNAL XDCR PRESS
136	XV	TRANSDUCER VERIFY COMPLETE
137	XZ	TRANSDUCER ZERO BAD

8/23/2018 127 www.cincinnati-test.com

Segment Codes

type "TABLE SEGMENT"

type	TABLE SEGMENT	
	Segment Code	Description
1	%VR	Percent of Reference Volume Test
2	APC	Setup - Atmospheric Pressure Check
3	AR	Autorun Relax
4	BAL	Stabilize DP Xdcr Balance
5	CBC	Chamber - blower control
6	CC0	Chamber - circulation off
7	CC1	Chamber - circulation on
8	CCX	Chamber - accumulation rest
9	CE0	Chamber - evacuate off
10	CE1	Chamber - evacuate on
11	CHA	Exhaust - Chamber Output Rest
12	CIF	Chamber - inlet blower off
13	CIO	Chamber - inlet blower on
14	CLN	Stabilize Chamber Cleanup
15	CO0	Chamber - outlet blower off
16	CO1	Chamber - outlet blower on
17	CP0	Chamber - pre-purge
18	CPC	Chamber - clamshell purge rings control
19	CPG	Chamber - Exh/Purge
20	СРО	Chamber - clamshell purge rings option
21	CPR	Chamber - clamshell purge rings rest
22	CST	Fill Clean
23	CV0	Chamber - vent off
24	DDL	Differential Pressure Decay - Leak Rate (volume calculated)
25	DLY	Delay
26	DPD	Differential Pressure Decay Test
27	DPD	Differential Pressure Decay Test (no abs pressure)
28	DPL	Differential Pressure Decay - Leak Standard Test (no abs pressure)
29	DPL	Differential Pressure Decay - Leak Standard Test
30	%VR	Percent of Reference Volume Test

	Segment Code	Description
31	DPS	Setup - DP Transducer Setpoint
32	DPT	Rate of Pressure Loss Test
33	DTV	Setup - DP Transducer Verification
34	DTZ	Setup - DP Transducer Zero
35	ERA	Setup - Electronic Regulator Analyze
36	ERS	Setup - Electronic Regulator Setpoint
37	ERZ	Setup - Electronic Regulator Zero
38	ESI	Internal - Empty-Seq
39	EST	Fill Evac
40	EXE	Exhaust until Empty
41	EXH	Exhaust
42	EXP	Exhaust until Pressure
43	EXT	Tooling Motion Extend
44	FFL	Fill until Full
45	FGN	General Fill
46	FLC	Mass Flow - Leak Rate Test
47	FLL	Fill (without pressure monitoring)
48	FLR	Precice Mass Flow Test (Differential Flow)
49	FLW	Mass Flow Test
50	FRF	Fill Reference
51	FRP	Fill Ramp
52	FST	Fill Tracer
53	FTS	Setup - Flow Transducer Setpoint
F 4	FTV	Setup - Flow Transducer Verification
54	FTZ	Setup - Flow Transducer Zero
55 56	HVC	Chamber - hardvac control
-	LKC	Link Control
57	LNK	Link Decision
58		
59	MVX	Setup - Mix Verification
60	осс	Occlustion Test (Backpressure)

8/23/2018 128 www.cincinnati-test.com

type "TABLE SEGMENT"

type	Comment Comment	
	Segment Code	Description
61	PLR	Pressure Decay - Leak Standard Test
62	PMK	Tooling Part Mark
63	PRC	Prefill - Charge Volume
64	PRF	Prefill/Fill
65	PRF	Prefill until Pressure
66	PRF	Proof Test
67	PRI	Internal - Pre-Seq
68	PRI	Internal - Evaluate Part Result
69	PRP	Prefill Pre-Pressure
70	PRS	Step Proof
71	PSI	Internal - Post-Seq
72	PTS	Setup - Pressure Transducer Setpoint
73	PTV	Setup - Pressure Transducer Verification
74	PTZ	Setup - Pressure Transducer Zero
75	PVF	Pressure Verify
76	RCF	Refrigerant Iso Off
77	RCX	Refrigerant CS Isolation
78	REC	Exhaust - T-Gas
79	REF	Refrigerant Fill
80	RET	Tooling Motion Retract
81	REV	Exhaust - Re-Evacuate
82	RFE	Refrigerant Evac
83	RFM	Refrigerant Manual Fill
84	RFS	Stabilize Scale
85	RFT	Refrigerant Fill
86	RFX	Refrigerant Stabilize
87	RL	Calibration Relax
88	RPS	Refrigerant Part Switch
89	RTE	Ramp to Pressure Event Test
90	RTF	Ramp to Flow Event Test

	Segment Code	Description
91	RTI	Ramp to Digital Input Event Test
92	RVN	Refrigerant Vent
93	SCI	Setup - Scale Init
94	SD1	Setup - Sniffer idle
95	SDP	Stabilize for DP
96	SDP	Stabilize Balance DP
97	SFS	Stabilize Tracer
98	SGL	Fill Tracer Gross
99	SGS	Stabilize Tracer Gross
100	SI1	Setup - Sniffer Init
101	SI2	Setup - Sniffer Init 2
102	SLE	Tooling Seal Extend
103	SLR	Tooling Seal Retract
104	SME	Setup - Manifold Exhaust
105	SMF	Setup - Manifold Fill
106	SMI	Setup - Manifold Isolate
107	SNF	Sniffer Test
108	SNG	Sniffer Gross Test
109	SNW	Stabilize Tracer Wait
110	SPF	Fill Step
111	SPL	Setup - Pressure Select
112	SPR	Setup - Pre-Seq
113	SPS	Setup - Post-Seq
114	SSD	Stabilize Step Dwell
115	SSR	Setup - Set Regulator
116	STE	Stabilize Evac
117	STF	Stabilize for Flow
118	STG	General Stabilize
119	STR	Setup - Transducer Residual
120	STR	Stabilize Reference Volume

8/23/2018 129 www.cincinnati-test.com

type "TABLE SEGMENT"

	Segment Code	Description
121	STS	Stabilize until Slope
122	SVD	Evac Test
123	SXT	Stabilize for Xdcr Test
124	TMC	Tooling Motion Control
125	XDR	Transducer Test

8/23/2018 130 www.cincinnati-test.com

Test Data Identifier Codes

type "TABLE VARIABLE"

	Test Data Identifier Code	Description
1	%P	Percent Precision
2	2in	Two Inputs to Start
3	AAA	Accum Autozero
4	AAV	Accept Average
5	ACT	Auto-Cycle Tst Mode
6	AD	Analog A/D
7	AER	Permit Early Reject
8	ALR	Alt Leak Rate
9	APC	Accept Percentage
10	APC	Atm Pressure Check
11	APP	Accept Program
12	AQ	Average Quantity
13	ARC	Autorun Cycle Count
14	ARE	Autorun Enable
15	ARM	Autorun Method
16	ARR	Autorun Relax
17	ASA	Short Autozero
18	ASD	Accept Std Dev
19	ASM	AutoSetup Method
20	ASP	Accept SPC Std Dev
21	ATD	Anti-Tie-Down
22	AZD	Autozero Delay
23	AZE	Autozero Enable
24	Ain	Analog Input
25	Aot	Analog Output
26	ВС	Batch Calibration
27	BCM	Barcode Method
28	BL	Batch Layout
29	BQ	Batch Quantity
30	BR	Barcode Required
31	CA	Accept Cycles
32	CAP	Calibrate Percent
33	CC	Capability Code
34	CCD	Ch Evac Valve Dly
35	ССР	Clear Prog Counters
36	CCR	Clear Chan Results
37	CCS	Clear Chan Counters
38	CEF	Chmbr Evac Limit
39	CEV	Chmbr Evac Close
40	CFS	Cleanup Setpoint
41	CGP	Chmbr Pre-Purge
42	CGT	Chmbr Pre-Purge
43	CHM	Post-Purge Method
44	СНО	Chmbr Post-Purge
45	CHP	Chamber Pressure

	Test Data Identifier	
	Code	Description
46	CHV	Chamber Volume
47	CID	CS Iso Delay
48	CLF	Corr. Leak Std Flow
49	CLM	Clamshell
50	CLP	Check Limit Percent
51	CLR	Cal Required
52	CLR	Cumulative Leak
53	CM	Malfunction Cycles
54	CM	Cal Method
55	CMN	Clean Min Pressure
56	CMP	Charge Min Press
57	CMX	Maximum Pressure
58	COF	Continue on Fail
59	COL	Cutoff Limit
60	СР	Current Precision
61	CPP	Copy Program
62	CPR	Charge Pressure
63	CPS	TLR Change/Sec
64	СРТ	Consecutive Points
65	СРТ	Consecutive Points
66	CR	Reject Cycles
67	CRA	Clean Part Source
68	CRF	Pre-Purge
69	CRS	Chmbr Crossover
70	CSC	Cycles Since Cal
71	CSN	Clear Since New Ctr
72	CSN	Cycles Since New
73	CST	Custom Self Test
74	СТ	Total Cycles
75	CTE	Continue to Evac
76	CTF	Continue to Fill
77	CTG	Target Pressure
78	СТР	Copy to Target Prog
79	СТР	Charge Target Press
80	CTR	Clean Part Timer
81	CTX	Continue T-Gas Exh
82	СХР	Charge Max Press
83	DA	Analog D/A
84	DD	Decay Direction
85	DFL	Direct Flow
86	DKL	DP Leak Loss
87	DL	Diff Press Loss
88	DLL	DP Master+Leak Loss
89	DLR	Diff Press Loss Rd
90	DLT	Delay Timer

8/23/2018 131 www.cincinnati-test.com

type "TABLE VARIABLE"

	Test Data Identifier Code	Description
91	DML	DP Master Part Loss
92	DMR	DP Mstr Part Lss Rd
93	DP	Diff Pressure
94	DPI	DP iso Percent
95	DPP	¤ Press Precision
96	DVF	Vent During Fill
97	DVM	Test Mode
98	DVO	Device Mode
99	Dt	Date
100	ECL	ERC Crossover Limit
101	EDC	EDC Offset
102	EDE	EDC Enabled
103	EDP	Event ¤P
104	EDP	EDC Percentage
105	EDQ	EDC Quantity
106	EDT	Event ¤T
107	EIL	ERC Increment Limit
108	EM	Exhaust Method
109	EMP	Ext Xdcr Pressure
110	ENB	E-NOB
111	ENC	Enable Calibration
112	ENT	Enable Tooling I/O
113	EOL	ERC Offset Limit
114	EPP	Pressure Precision
115	EPR	Pressure Reference
116	EPV	Estimated Part Size
117	ERA	Atm Pressure
118	ERC	ERC Method
119	ERE	ERC Enabled
120	ERP	ERC Rate/Period
121	ERQ	ERC Quantity
122	ERR	E-Regulator Rest
123	ERV	Re-Evac After Test
124	ESC	Ext Switch Low Chk
125	ESN	External Sniffer
126	ESP	Exhaust Setpoint
127	ET	Elapsed Time
128	ETP	Evacuation Setpoint
129	ETP	Fine T-Gas Target
130	ETW	ERC Target Window
131	ETW	ERC Target Window
132	ETY	Edge Type
133	EUP	Pressure Unit
134	EVA	Evacuation Source
135	EVC	Eval Condition

	Test Data Identifier Code	Description
136	EVD	Vacuum Decay
137	EVL	Test Evaluation
138	EVM	Allow Evac Limit
139	EVP	Event Pressure
140	EVT	Event Type
141	EXD	Evacuation Xdcr
142	EXP	Execution Pause
143	FC	Feature Code
144	FCC	Force Cal Cycles
145	FCD	FCal Date Limit
146	FCL	FCal Cyc Limit
147	FCM	Force Cal Mode
148	FCT	FCal Time Limit
149	FCT	Force Cal Time
150	FEL	Flow Event Limit
151	FL	Flow
152	FLD	Fine T-Gas Decay
153	FLF	Fine T-Gas Fill
154	FMV	Finish Mix Verify
155	FNB	FF-NOB
156	FP	Flow Precision
157	FPR	Fill Pressure
158	FPS	Fine Sample
159	FSW	Final Src Weight
160	FTA	Fill
161	FTA	Dwell
162	FTX	Test Failed Text
163	Fdb	Tooling Feedback
164	GLD	Gross T-Gas Decay
165	GLF	Gross T-Gas Fill
166	GLN	Gross T-Gas Min
167	GLT	Gross T-Gas Target
168	GLX	Gross T-Gas Max
169	GPS	Gross Sample
170	GPT	Gross Fill Pulse
171	HLE	High Limit Event
172	HLF	High Limit Flow
173	HLL	High Limit Loss
174	HLP	High Limit Pressure
175	HLQ	High Limit Leak
176	HLR	High Limit Rate
177	HLV	High Limit %Vref
178	1/0	I/O ID
179	IET	Event Type
180	IF	Instrument Flow

8/23/2018 132 www.cincinnati-test.com type "TABLE VARIABLE"

	TABLE VAR Test Data	
	Identifier	5
_	Code	Description
181	IIS	Input Initial State
182	ILS	Level State
183	ILT	Level Time
184	IPR	Close Inner Purge
185	IS	Input State
186	ISO	Isolation
187	LAV	Leak Alarm Volume
188	LCD	Leak Std/Cal Define
189	LCD	Leak Std Cal Date
190	LCF	Correction Factor
191	LDP	Leak Det Precision
192	LDT	Dev Zero Delay
193	LDU	Leak Det Unit
194	LDZ	Device Zero
195	LF	Master+Leak Flow
196	LFC	Leak Std Cal Flow
197	LFR	Master+Leak Flow Rd
198	LIN	Linearity
199	LKF	Leak Flow
200	LKL	Leak Loss
201	LKM	Link Motion
202	LL	Master+Leak Loss
203	LLE	Low Limit Event
204	LLF	Low Limit Flow
205	LLL	Low Limit Loss
206	LLP	Low Limit Pressure
207	LLQ	Low Limit Leak
208	LLR	Master+Leak Loss Rd
209	LLR	Low Limit Rate
210	LLV	Low Limit %Vref
211	LMP	Link Motion Preempt
212	LNL	Linearity Limit
213	LOF	Loss Offset
214	LQ	Master+Leak QL
215	LQD	DP Mstr+Lk QL Rd
216	LQD	DP Master+Leak QL
217	LQF	Master+Leak QF Rd
218	LQF	Master+Leak QF
219	LQR	Master+Leak QL Rd
220	LR	Leak Rate
221	LRC	Leak Std Recert
222	LRO	Leak Rate Offset
223	LRO	Leak Rate Offset
224	LSC	Leak Std Chk
225	LSP	Leak Std Pressure

	Test Data Identifier Code	Description
226	LSS	Leak Std Select
227	LSV	Leak Std Value
228	LV	Launch Validation
	ME	Malfunction Eval
	MF	Master Part Flow
	MFO	Manual Fill
	MFR	Master Part Flow Rd
	MFT	Manual Fill
234	ML	Master Part Loss
	MLF	Min Mstr+Leak Flow
	MLF	Min Leak Flow
	MLL	Min Leak Loss
	MLR	Master Part Loss Rd
	MMF	Min Master Flow
240	MMF	Min Master Flow
241	MML	Max Master Loss
	MML	Min Mstr+Leak Loss
	MML	Min Master Loss
244	MNT	Min Tare Weight
245	MO	Master Flow Offset
	MOR	Master Flow Offset
	MPC	Malfunction Percent
248	MPF	Min Perform Factor
249	MPP	Max System Pressure
250	MQ	Master Part QL
251	MQD	DP Mstr Part QL Rd
	MQD	DP Master Part QL
253	MQF	Master Part QF Rd
254	MQF	Master Part QF
255	MQR	Master Part QL Rd
256	MSL	Reject Rate
257	MSO	MS Iso Open Delay
258	MSP	Max Pressure - Opt
259	MSR	Mark Severe Lk Rej
260	MST	Mass Spec Purge
261	MTM	Min T-Gas Mode
262	MTS	T-Gas Source
263	MV	T-Gas Mix Verify
264	MVF	T-Gas Tgt Press
265	MVH	Leakrate High Limit
266	MVL	Leakrate Low Limit
267	MVM	T-Gas Leak Rate
268	MVS	Start Mix Verify
269	MVT	T-Gas Fill Timer
270	MXT	Max Tare Weight

8/23/2018 133 www.cincinnati-test.com

type "TABLE VARIABLE"

type	'TABLE VAI	(TABLE
	Test Data Identifier Code	Description
271	Mot	Motion Number
272	Mot	Number of Motions
273	NAM	Program Name
274	NBC	Number of Barcodes
275	NLK	Number of Links
276	NOP	Number of Options
277	NPP	Next Program
278	NPS	Number of Steps
279	NTP	Sample Points
280	NUM	Number of Programs
281	OLS	Open Leak Std
282	OPT	Option
283	OTL	Open T-Gas Leak Std
284	Р	Master Gauge Press
285	Р	Instrument Pressure
286	Р	Meas Pressure
287	P%V	Part %Vref
288	PC	Pneumatic Code
289	PCL	Leak Std Cal Press
290	PCR	Pressure Correction
291	PCT	Chmbr Post-Purge
292	PDL	Press Delta Limit
293	PET	Part Evac Limit
294	PEV	Part Evacuation
295	PEX	Partial Exhaust
296	PF	Performance Factor
297	PFL	Part Flow
298	PFM	Prefill Method
299	PG	Target Pressure
300	PKP	Peak Pressure
301	PL	Pressure Loss
302	PLP	Predicted Loss
303	PLQ	Master+Leak Q-Press
304	PLR	Pressure Loss Rd
305	PLR	DP Mstr+Lk Loss Rd
306	PM	Master Part Press
307	PM	Part Mark
308	PMF	Part Mark Feedback
309	PML	Master+Leak Press
310	PMN	Minimum Pressure
311	PMQ	Master Part Q-Press
312	PMX	Maximum Pressure
313	PNM	Sniffer Test Point
314	PP	Pressure Precision
315	PP	Proof Pressure

	Test Data Identifier	
	Code	Description
316	PPC	Part Present Check
317	PPC	Prefill Press Check
318	PPE	Pre-Press Enable
319	PPR	Pre-Pressure
320	PPS	Pre-Press Select
321	PPW	Pre-Pressure Window
322	PQ	Predicted Leak
323	PRF	Prefill
324	PRI	Programmable Input
325	PRO	Programmable Output
326	PRR	Pressure Restrict
327	PSL	Pressure Select
328	PSL	Pressure Select
329	PSL	Pressure Select
330	PSP	Setpoint Pressure
331	PST	Self Test Pressure
332	PSV	Part Sniffer Type
333	PT	Target Pressure
334	PTF	Prefill
335	PTG	Gross Prefill
336	PTP	¤P/¤T Precision
337	PTS	Port Select
338	PTS	Part Seal
339	PTU	¤P/¤T Unit
340	PTX	Test Passed Text
341	PW	Weight Precision
342	Рр	Part Pressure
343	Pr	Ref Pressure
344	Ps	Standard Pressure
345	Pt	Program Number
346	Pt	Apply to Program #
347	Pt	Target Pressure
348	Pt	Test Pressure
349	QF	Quik Flow
350	QHL	Quik Test HL Band
351	QL	Quik Loss
352	QLL	Quik Test LL Band
353	QP	Quik Test Pressure
354	QPT	Quantity Points
355	QTE	Quik Test Enable
356	RAN	Number of Points
357	RAP	Analysis Pressure
358	RAS	Analysis Voltage
359	RAT	Analysis Percent
360	RAV	Reject Average

8/23/2018 134 www.cincinnati-test.com

type "TABLE VARIABLE"

Spe	Test Data	
	Identifier	Description
264	Code	Description Flos Pogulator Cal
361	RC	Elec Regulator Cal
362	RC1	EReg Zero DA Cal
363	RC2	EReg Span DA Cal
364	RC3	EReg Zero Base Cal
365	RC4	EReg Span Base Cal
366	RCA	Analog Value
367	RCD	Last Cal Date
368	RCI	Instrument Pressure
369	RCP	Retention Cutoff
370	RCS	Setpoint Voltage
371	RCT	Last Cal Time
372	RCV	Master Value
373	RDI	Restore Default I/O
374	RDT	Reg Dwell Timer
375	RED	Refrgnt Vent Close
376	REG	Regulator
377	REO	Refrigerant Vent
378	REX	Refrigerant Vent
379	RFC	Fill Close Delay
380	RFL	Reference Loss
381	RL	Loss Rate
382	RLC	Run Leak Calibrate
383	RLR	Loss Rate Rd
384	RLV	T-Gas LeakStd Value
385	RMX	EReg Span DA Cal
386	RNP	Number of Points
387	ROS	Reject on Slope
388	RPC	Reject Percentage
389	RPM	Ramp Method
390	RPP	Retain Part Press
391	RPP	Reject Program
392	RR	Retract on Reject
393	RR	Ramp Rate
394	RRT	Reject Rate Total
395	RSI	Result Information
396	RSP	Slope Window
397	RSR	Slope Change/Sec
398	RST	Stabilize
399	RVH	High Limit Voltage
400	RVH	High Limit Voltage
401	RVL	Low Limit Voltage
402	RVL	Low Limit Voltage
403	RVP	Retain Volume Press
404	RXM	Pre-Evac Exhaust
405	SAM	Sample Size
703	-,	

	Test Data Identifier Code	Description
406	SAS	Start AutoSetup
407	SCF	Cal Coefficient
408	SCL	T-Gas LeakStd Value
409	SCO	Cal Offset
410	SCP	Start Clean Part
411	SCR	Reject Rate Percent
412	SCT	Scale Type
413	SDH	ST DP High Limit
414	SDL	ST DP Low Limit
415	SEV	Leak Rate Window
416	SF	Standard Flow
417	SGN	Sample Gas Number
418	SIO	Sniffer Init
419	SMP	Sample Time
420	SN	Step Number
421	SNR	SNR
422	SOD	Shut Off Delay
423	SP	Standard Pressure
424	SP	Starting Pressure
425	SPM	Fine Wait
426	SPT	Gross Wait
427	SR	Set Regulator
428	SRC	Start Calibration
429	SRH	ST RPL High Limit
430	SRH	LD Leak Val Max
431	SRL	LD Leak Val Min
432	SRL	ST RPL Low Limit
433	SSW	Starting Src Weight
434	STH	ST TPL High Limit
435	STL	ST TPL Low Limit
436	STL	Self Test Level
437	STM	Self Test Method
438	STN	Self Test Program
439	STP	Target Press
440	STS	Self Test Source
441	STS	Start Self Test
442	STT	Self Test Limit
443	STV	Step Target Press
444	STW	Target Window
445	SXC	Start Calibration
446	SXT	Start Xdcr Test
447	SXV	Start Verification
448	SZH	LD Zero Val Max
449	SZL	LD Zero Val Min
450	Ser	Serial Number

8/23/2018 135 www.cincinnati-test.com

type "TABLE VARIABLE"

type	Test Data	
	Identifier	
	Code	Description
451	Stn	Channel Number
452	Т	Timer
453	Т	Timer
454	TBF	LD Background Limit
455	TEP	T-Gas Exh Press
456	TI	Iso Delay Timer
457	TL	Tooling Option
458	TLK	Test Leak Rate
459	TLP	Leak Rate Precision
460	TLR	T-Gas Leak Rate
461	TLU	Leak Rate Unit
462	TML	LD Min T-Gas Setpt
463	TMN	Fine T-Gas Min
464	TMP	Temp Precision
465	TMX	Fine T-Gas Max
466	TP	Time Precision
467	TPP	Target Program
468	TPW	Target Press Window
469	TQ	Quik Test Timer
470	TR1	Trigger 1
471	TRA	T-Gas Source
472	TRM	T-Gas Recovery
473	TSM	T-Gas Sampling
474	TT	Test Sel Timer
475	TT	Test Execution Time
476	TTF	TracerMate Flags
477	TTY	Test Type
478	TTY	Test Type
479	TV	Valve Delay Timer
480	TW	Target Weight
481	TWN	Min Fill Weight
482	TWX	Max Fill Weight
483	Тсу	Desired Cycle Time
484	Tm	Timer Mode
485	Tm	Time
486	UC	Current Unit
487	UDP	¤ Pressure Unit
488	UF	Flow Unit
489	UP	Pressure Unit
490	UP	Percent Unit
491	UPD	Unit/Prec Define
492	UT	Time Unit
493	UTM	Temperature Unit
494	UV	Voltage Unit
495	UV	Volume Unit

	Test Data Identifier Code	Description
496	UW	Weight Unit
497	V	V
498	VAN	Valve A Num - Opt
499	VAP	Valve A PWM - Opt
500	VAT	Valve A Type - Opt
501	VBN	Valve B Num - Opt
502	VBP	Valve B PWM - Opt
503	VBT	Valve B Type - Opt
504	VC	Valve Code
505	VCN	Valve C Num - Opt
506	VCP	Valve C PWM - Opt
507	VCT	Valve C Type - Opt
508	VDN	Valve D Num - Opt
509	VDP	Valve D PWM - Opt
510	VDT	Valve D Type - Opt
511	VFL	Virtual Flow
512	VHT	Vent/Halt Tooling
513	VLD	Valve Detection
514	VLP	Volume Precision
515	VLV	Valve Number
516	VNP	Number of Points
517	VP	Voltage Precision
518	VPS	Setpoint Pressure
519	VPW	Valve PWM
520	VSP	Setpoint Voltage
521	VWO	Residual Offset
522	Vi	Instrument Volume
523	Vp	Part Volume
524	WGT	Refrigerant Weight
525	WHL	High Limit
526	WIN	Stat History Length
527	WLL	Low Limit
528	XAN	Xdcr Zero LL
529	XAX	Xdcr Base Max
530	XBH	Xdcr Zero Hwin
531	XBL	Xdcr Zero Lwin
532	XC	Transducer Cal
533	XC1	Xdcr Zero AD Cal
534	XC2	Xdcr Span AD Cal
535	XC3	Xdcr Zero Base Cal
536	XC4	Xdcr Span Base Cal
537	XCA	Analog Value
538	XCB	Atm Pressure
539	XCD	Last Cal Date
540	XCF	Instrument Flow

type "TABLE VARIABLE"

- Spr	Test Data	
	Identifier Code	Description
541	XCI	Description
	XCL	Instrument Pressure Xdcr Curr Limit
542		
543	XCM	Master Reading
544	XCP	Cal Pressure
545	XCS	Setpoint Pressure
546	XCT	Last Cal Time
547	XCV	Master Value
548	XCX	Xdcr Cal X Array
549	XCY	Xdcr Cal Y Array
550	XFC	Xdcr Filter Code
551	XFP	Flow Precision
552	XID	Xdcr Iso Delay
553	XIS	Xdcr Span Inter Cal
554	XIZ	Xdcr Zero Inter Cal
555	XLF	Max Mstr+Leak Flow
556	XLF	Max Leak Flow
557	XLL	Max Leak Loss
558	XMF	Max Master Flow
559	XML	Max Mstr+Leak Loss
560	XMN	Xdcr Base Min
561	XMX	Xdcr Base Max
562	XNP	Number of Points
563	XOP	Crossover Pressure
564	XPC	Pressure Correction
565	XPM	Pressure Mode
566	XPP	Pressure Precision
567	XPR	Pressure Reference
568	XRL	Xdcr Risidual Limit
569	XRW	Xdcr Risidual Warn
570	XSP	Setpoint Pressure
571	XT	Transducer
572	XT	Xdcr Tare
573	XTG	Xdcr Tare Range
574	XTR	Xdcr Typ Residual
575	XUF	Flow Unit
576	XUP	Pressure Unit
577	XV	Transducer Verify
578	XVD	Verify Date
579	XVF	Instrument Flow
580	XVI	Instrument Pressure
581	XVM	Master Reading
582	XVS	Setpoint Pressure
583	XVT	Verify Time
584	XVV	Master Value
585	XZC	Xdcr Zero Check

Code Description 586 XZH Xdcr Zero HL 587 XZL Xdcr Zero LL	
588 XZW Xdcr Zero Window	
589 t Test Time	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Appendix E - Instrument Attachment and Clearance

NOTES:

- 1) THIS DRAWING IS NOT TO SCALE.
- 2) ALL MEASUREMENTS ON THIS PAGE ARE IN INCHS.
- 3) ALL INSTRUMENTS ARE SHIPPED WITH (4) .25-28X 3.5 INCH LONG SHCS.
- 4) RECOMMENDED 4 INCH CLEARANCE UNDER INSTRUMENT FOR TEST PORT, PNEUMATIC CONNECTIONS, AND HAND CLEARANCE.

8/23/2018 138 www.cincinnati-test.com

This page is intentionally blank.

8/23/2018 139 www.cincinnati-test.com

Index

Adjust Parameters, 31	Leak Loss, 60
Anti-Tie-Down, 70	Leak Standard, 13, 16, 29, 31, 34, 35, 37, 39, 47, 48, 53, 54,
Auto Setup, 9, 15, 30, 31, 74, 109, 114, 115	57, 59, 60, 62, 73, 74, 96, 98, 99
Autorun, 98	Leak Standard Values, 16, 35, 59
Backup & Restore Instrument, 96	LED Lights, 96
Backup Instrument Settings, 18	Link, 88, 113
Binary Program Selection, 73	Main Menu, 7, 9, 12, 15, 16
Cal Method, 31, 35, 59, 99	Manifold, 1, 31, 45, 93, 99
Calibration Parameters, 39, 62	Master Part, 13, 29, 32, 35, 37, 39, 51, 53, 55, 57, 59, 60, 62
Channel Configuration, 15, 16, 79, 101	99, 113, 120, 121, 122
Clone Instrument, 96	Master Part Flow, 121
Common, 67, 68, 70, 109, 115, 116	Master Part Loss, 35, 37, 39, 60, 62, 110, 121
Communication, 8, 14, 73, 79, 82, 85, 86, 87, 88, 89, 90, 101,	Master+Leak Loss, 35, 37, 39, 60, 62, 110
102	Messages & Error Codes, 109
Communication Code Tables, 123	Monitor Icon, 7
Counters Screen, 107	Monitor Screens, 9, 83, 103
Data Type Codes, 87, 109, 123	Non-Leaking Master Part, 13, 29, 35, 37, 39, 53, 59, 60, 99,
Diff Pressure (DP)-Leak Std, 13	121
Diff Pressure (DP)-ΔP, 13	Number of Motions, 63, 78
Differential Pressure Decay-Leak Std, 62	Occlusion, 13, 41
Differential Pressure Transducer, 48, 53, 54	Open Leak Std, 69, 73, 80, 96
Digital I/O Cable Diagram, 68	Outputs, 14, 63, 65, 66, 67, 68, 69, 74, 75, 77, 79, 80, 82, 83
Display User Level, 16, 35, 59, 63, 65, 95	84, 104, 105
EDC, 22, 27, 35, 51, 57, 121, 122	Parsing Data, 90
Electromagnetic Energy Devices, 1	Part Mark, 20, 114
Electronic Regulator, 17, 102	Part Present, 63, 69, 70, 78, 80, 82, 114
Electronic Regulator Calibration, 91, 102, 112	Part Present Check, 63, 78
Enter Button, 7	Performance Factor, 35, 37, 39, 57, 60, 62, 111
Environmental Drift Correction, 22, 27, 35, 51, 57, 121, 122	Pneumatic Regulator, 17
E-Regulator Rest, 102	Prefill, 20, 21, 24, 25, 32, 33, 49, 55, 69, 74, 75, 76, 80, 90,
Ethernet Port, 6	98, 115
EtherNet/IP, 8, 14, 73, 79, 80, 81, 82, 83, 84	Prefill Timer Function, 98
Example, 21, 25, 33, 77, 87, 88, 90, 98, 107, 120	Pressure Correction, 98
Examples, 103	Pressure Decay-Leak Std, 13, 29, 30, 39, 88, 89, 119
Exhaust, 3, 4, 5, 20, 24, 32, 42, 46, 49, 55, 69, 70, 72, 73, 74,	Pressure Decay AP/AT 12, 23
75, 80, 115	Pressure Decay-ΔP/ΔT, 13, 23
FAT32, 18, 96, 97	Pressure Regulator, 17, 20, 24, 32, 41, 49, 55, 114, 115, 117
Features, 79, 95	Pressure Select, 17, 30, 74, 115
Fill, 20, 24, 32, 49, 55, 69, 73, 74, 75, 80, 98	Pressure Verify, 13, 45
Fill the Test Part, 19, 23, 29	Preventive Maintenance, 3
Filters, 1, 3, 141	Program Cal, 9, 32, 34, 35, 37, 38, 39, 55, 59, 60, 61, 62, 69,
Global Configuration, 79	73, 74, 80, 96, 110, 111, 113
Hardware Inputs, 9, 80, 83, 84, 104	Program Calibration, 35, 37, 59, 60, 74, 93, 109, 111, 113,
Hardware Outputs, 9, 80, 83, 84, 104	119, 120
Header Codes, 123	Program Configuration, 17, 79, 111
Hold, 7, 69, 70, 80, 93	Program Evaluation Codes, 89, 123
I/O Wiring, 66	Program Select Buttons, 8
Inlet Air, 3	Programmable Inputs and Outputs, 69, 80
Inputs, 14, 30, 63, 65, 66, 67, 68, 69, 70, 73, 77, 79, 80, 82,	Quik Test, 35, 119, 120
83, 84, 98, 104, 105	Quik Test Timer, 35, 120
IP Inputs, 9, 82, 83, 84, 105	Relax, 32
IP Outputs, 9, 82, 83, 84, 105	Reports, 91, 101, 102
Leak Loss, 39, 62	Results Screen, 107
Leak Loss, 37	Retract on Reject, 78, 93

RS232, 3, 4, 8, 9, 73, 85, 88, 90, 91, 109
Security, 9, 18, 93, 95
Segment Codes, 90, 127, 128
Self-Test, 1, 5, 15, 17, 45, 57, 97, 110
Self-Test Failed, 115
Self-Test Passed, 115
Setup, 9, 11, 14, 15, 17, 18, 30, 31, 48, 54, 74, 85, 95, 109, 114, 115
Severe Leak, 21, 25, 33, 69, 71, 72, 75, 76, 80, 114, 115
SPC, 69, 73, 80, 88
Stabilization Time, 19, 23, 29, 48, 50, 54, 56, 110, 115
Stabilize, 19, 20, 23, 24, 29, 32, 33, 37, 48, 49, 54, 55, 60, 69, 74, 76, 80, 111, 115, 119
Start Program, 69, 70, 80
Stats Screen, 107

Stop Reset, 72 Stop/Reset, 69, 70, 71, 72, 78, 80, 116 Streaming, 79, 87, 90

Target Pressure, 20, 21, 24, 25, 30, 32, 33, 39, 41, 42, 49, 50, 55, 56, 62, 111, 114

Target Test Pressure, 19, 23, 29, 42, 50, 56 TCP/IP, 86

Technical Specifications Summary, 141 TELNET, 86

Test, 20, 23, 24, 26, 29, 32, 33, 41, 42, 45, 46, 48, 49, 54, 55, 56, 69, 74, 76, 80

Test Data Identifier Codes, 89, 90, 129, 130, 131, 132, 133, 134

Test Evaluation, 22, 27, 31, 34, 43, 46, 50, 56, 79, 88, 89, 119, 120

Test Evaluation Codes, 89, 124, 125

Test Failed, 69, 75, 76, 80 Test Parameters, 18, 22, 27, 34, 43, 46, 51, 57, 120

Test Passed, 69, 75, 76, 80 Test Port, 1, 13, 17, 45, 97, 110, 115, 116

Test Results, 22, 27, 34, 43, 46, 51, 57, 73, 75, 85, 88, 91, 120, 121, 122

Test Time, 13, 23, 29, 41, 50, 56, 110, 111, 119, 120

Test Type, 9, 12, 13, 18, 88, 89, 109

Test Type Menu, 12

Test., 19

Timer Parameters, 20, 24, 30, 32, 42, 46, 49, 55

Tooling Control, 14, 20, 24, 32, 42, 49, 55, 63, 75, 114, 115

Tooling Extend, 20, 24, 32, 42, 49, 55, 71, 72, 75, 76

Tooling Motion, 20, 24, 30, 32, 42, 49, 55, 63, 70, 71, 72, 73, 75, 78, 109, 116

Tooling Option, 63

Tooling Retract, 20, 24, 32, 42, 49, 55, 71, 72, 75, 76 Transducer, 15, 42, 45, 47, 48, 49, 53, 54, 55, 72, 91, 101,

111, 112, 116, 117 Transducer Calibrate, 91, 101, 116

Transducer Calibration Report, 101 Transducer Verification Report, 101

Transducer Verify, 91, 101, 117

Transducer Zero Bad, 112, 117

TST Parameter, 22, 27, 34, 43, 46, 120, 122

Two Inputs to Start, 70 Units of Measure, 15 Update Firmware, 97

USB Memory Stick, 7, 18, 96, 97

USB Port, 6, 7, 96, 97

Vent/Halt, 69, 70, 71, 72, 79, 80

Sentinel C28 Technical Specifications

Outside Physical Dimensions

Wall mount model (W x H x D): 229 x 165 x 184 (mm) 9 x 6.5 x 7.25 (inches)

Electrical Specifications

Supply power: 100-240 VAC 50-60 Hz auto sensing/switching

Input power fuse: 3 Amp 250VAC, slow, 5X20MM, glass I/O driver fuse: 1 Amp 250VAC, fast, 5X20MM, glass

Board fuse: 3.125 Amp 250VAC, fast, radial leads, plastic can, vertical plug in fuse

Output current limit for each output: 0.5 amp max

Output current limit for all outputs combined: 1 amp max Instrument may operate at ± 10% of nominal voltage

Environmental Factors

Operating temperature Range: 5°C to 40° C (41°F to 104°F) Maximum humidity 90% relative humidity, non-condensing Maximum operating altitude 2,500 meters (8,200 feet) Indoor use only, IP20

Inlet Ports & Connection Type

P1 1/4-18 FNPT or 1/4-19 BSPT fitting Vacuum to 200 psi (1380 kPa) * Vacuum to 200 psi (1380 kPa) * Vacuum to 200 psi (1380 kPa) * Pilot 1/8 FNPT or 1/8 BSPT fitting 65 to 105 psi (540 kPa to 725 kPa)

Hi Press 1/4-18 FNPT or 1/4-19 BSPT fitting 0 to 500 psi (3450 kPa)

Connection Type & Max Pressure Rating

Air Cleanliness Specifications

Max Particulate Size: 0.3 micron

Max Dew Point: -30°C Max Oil: 0.1mg/m3

Recommended Filter Sets (available separately)

Small filter (includes 5.0 micron and 0.3 micron filters) for parts less than 300 ml Medium filter (includes 5.0 micron and 0.3 micron filters) for parts from 300 ml to 13,000 ml Large filter (includes 5.0 micron and 0.3 micron filters) for parts larger than 13,000 ml

Contact Cincinnati Test Systems Customer Service Department

By phone 513-202-5108 or by email service@cincinnati-test.com 8am-5pm eastern US

For after-hours, 24/7 emergency phone support, call 513-202-5174

8/23/2018 www.cincinnati-test.com

^{*} See label on instrument enclosure to determine whether port is for pressure or vacuum