

Sentinel C20

User Manual

IMPORTANT INFORMATION

Information in this document is subject to change without notice and does not represent a commitment on the part of Cincinnati Test Systems, Inc. No part of the manual and/or software may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or information storage and retrieval systems, for any purpose, other than the purchaser's personal use, without the express permission of Cincinnati Test Systems, Inc.

No patent liability is assumed with respect to the use of the information contained herein. While every precaution has been taken in the preparation of this book, Cincinnati Test Systems, Inc. assumes no responsibility for errors or omissions.

Because of the variety of uses for this equipment and because of the differences between this solid-state equipment and electromechanical equipment, the user of and those responsible for applying this equipment must satisfy themselves as to the acceptability of each application and use of the equipment. In no event will Cincinnati Test Systems be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The illustrations, charts, and layout examples shown in this manual are intended solely to illustrate the text of this manual. Because of the many parameters and requirements associated with any particular installation, Cincinnati Test Systems cannot assume responsibility or liability for actual use based upon the illustrative uses and applications.

CAUTION - When you see this warning symbol on the product, refer to the instruction manual for information before proceeding.

CAUTION - To avoid personal injury due to electric shock, disconnect all power services before servicing.

If this instrument is not used according to the instructions of this manual, the protection provided by this equipment' design may be compromised.

© 2017 Cincinnati Test Systems

This page is intentionally blank.

5/23/2017 www.cincinnati-test.com

Table of Contents

Chapter 1 – Introduction		5
Unpacking	5	
Instrument Attachment & Clearance	5	
Installation	5	
DC Power Connection	6	
Supply Connections	7	
User Interface Navigation	10	
Menu Structure	11	
Chapter 2 – Setup		13
Selection of Test Types		
Test Type Table	14	
Channel Configuration	15	
Setting the Units of Measure	15	
Setting the Leak Standard Values		
Program Configuration	17	
Setting the Pneumatic Regulator		
Setting the Test Parameters	17	
Verifying Setup		
Security		
Chapter 3 – Pressure Decay-∆P		19
Timer Parameters		
Pressure Parameters	20	
Test Parameters	21	
Chapter 4 – Pressure Decay ΔP/ΔT		23
Timer Parameters	24	
Pressure Parameters	24	
Test Parameters	25	
Chapter 5 – Pressure Decay-Leak Std		27
Timer Parameters	28	
Pressure Parameters	29	
Test Parameters	30	
Program Calibration	32	
Initiating the Program Cal Sequence	32	
Performance Factor	33	
Conditions for a Successful Calibration	33	
Calibration Parameters	35	
Chapter 6 – Inputs and Outputs		37

i

Input and Output Wiring	37	
Input and Output Connector Pinout	37	
Input and Output Table	38	
Inputs	39	
Outputs	40	
14 Pin Digital I/O Cable Diagram and Pinout Table	41	
Output Timing Diagram	42	
Chapter 7 – Communication		43
Establishing RS232 Communication	43	
Understanding the Header Information	44	
Test Results via RS232 communication	45	
Streaming Measured Data	46	
Parsing Data Packets	46	
Reports	47	
Chapter 8 – Security		49
Chapter 9 – Features		51
Setting the Date & Time	51	
Changing the Instrument Language	51	
Open Internal Leak Standard	51	
Self-Test	52	
Update Firmware	52	
Changing the Functionality of the Prefill Timer	53	
Pressure Correction	53	
Setting the Cal Method and Leak Standard Location	54	
Valve Detection	54	
Chapter 10 – Instrument Calibration		55
Verifying a Transducer	55	
Calibrating a Transducer	55	
Pressure Transducer Cal 1 (Pressure)		
Chapter 11 – Monitor Screen Examples		57
Monitor Screen Examples		
Chapter 12 – Results Screen Examples		59
Result Data Screens		
Appendix A – Messages & Error Codes		61
Test Messages & Errors	61	
Appendix B – Quik Test		69
How it works	69	
Test Parameters		
Appendix C – Environmental Drift Correction		
How it works	71	

TABLE OF CONTENTS

Appendix D – Communication Code Tables		73
Data Type Codes or Header Codes	73	
Program Evaluation Codes	73	
Test Evaluation Codes	74	
Segment Codes	76	
Test Data Identifier Codes	78	
Appendix E - Setup & Instrument Configuration Sheets		85
Instrument and Part Parameter Setup Menu	85	
Instrument Configuration Table	86	
Appendix F - Instrument Attachment and Clearance		87
Index		89
Sentinel C20WE Technical Specifications		91

5/23/2017 iii www.cincinnati-test.com

This page is intentionally blank.

5/23/2017 iv www.cincinnati-test.com

Chapter 1 – Introduction

This chapter explains the external pneumatic and electrical connections, and introduces the simple menu structure and navigation of the instrument.

Thank you for purchasing the Sentinel C20WE precision leak test instrument. The Sentinel C20TM World Edition is capable of testing using a variety of pre-packaged test algorithms designed to get you testing as quickly and easily as possible. Let's get started!

Unpacking

Carefully remove the instrument from the shipping carton. Locate the AC power cord or the DC cable supplied with the instrument. The test port should have a ColderTM quick connect test port with Self-Test cap. Alternatively, you may install any suitable 1/4" NPTM fitting into the manifold test port. If this is not a standard instrument, see the print packet that shipped with your instrument for the proper thread specifications.

Instrument Attachment & Clearance

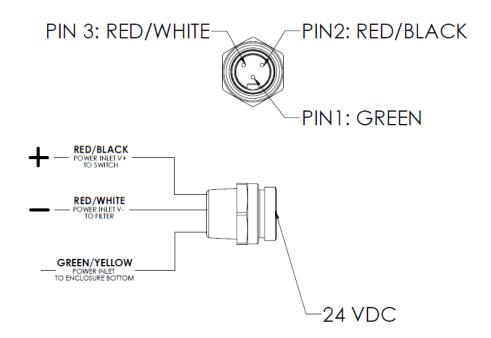
There are four (4) rear mounting holes for $\frac{1}{4}$ inch (6 mm) socket head cap screws, $3\frac{1}{2}$ inches (90 mm) long (for a $\frac{1}{4}$ inch *minimum* mounting plate thickness). The instrument is supplied with four (4) $\frac{1}{4}$ inch – 28 x $3\frac{1}{2}$ inch socket head cap screws for convenience.

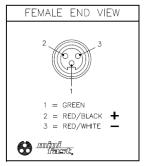
Please allow 4 inch (100 mm) clearance under the instrument for installation of test line and for hand clearance.

Note: These recommendations are also clarified in <u>Appendix E</u> with detailed hole to hole dimensions in detailed "full scale" reference to the clearance dimension.

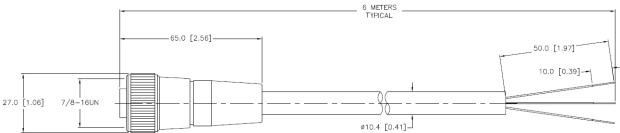
Installation

The leak test instrument is a modular, flexible instrument designed to operate in a manufacturing, clean room, or lab environment. To operate trouble-free, it requires:


- Clean, dry instrument air for test and pilot air (recommend 0.3 and 5.0-micron coalescing filter)
 - ISO 8573-1, Class 2 filters are recommended, with class 3 being acceptable.
- Vacuum for vacuum test applications
- Supply power: 24 VDC or 100-240 VAC 50/60 Hz auto sensing/switching electrical (based on configuration)


Because this is a precision instrument, it is preferable to locate this instrument at least 15 feet (5 meters) away from high electromagnetic energy devices (induction heat treat equipment and welders) whenever possible. In addition, plants having poor quality electrical power or ground systems should consider using isolation transformers on the power drops.

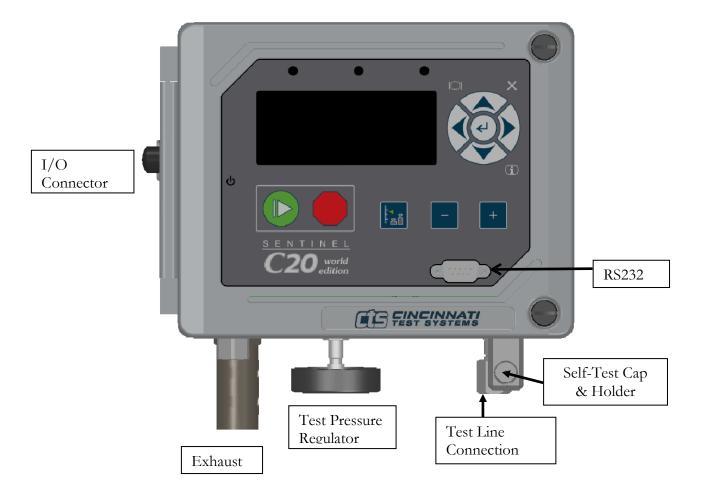
5/23/2017 5 www.cincinnati-test.com


Note: When supplying power, always be certain that there is nearly zero voltage (< 1 V) difference between the neutral and earth ground wires connected to the instrument.

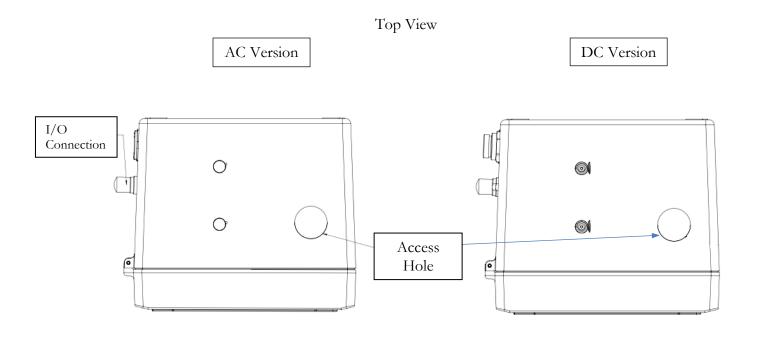
DC Power Connection

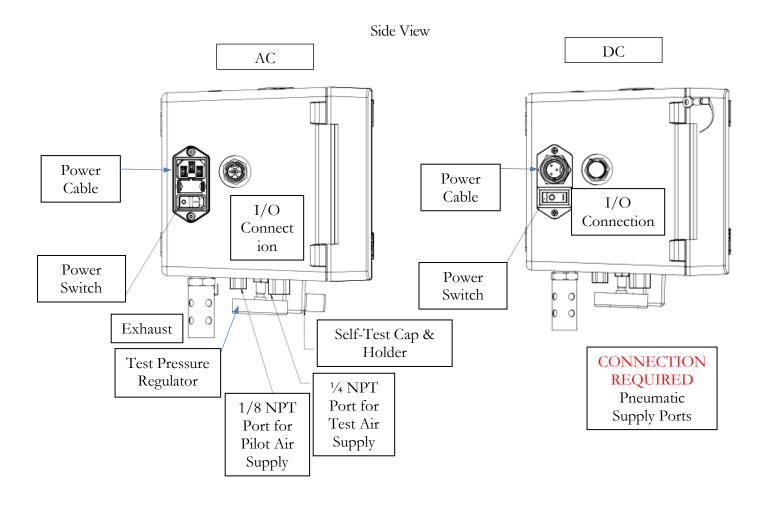
SPECIE	ICATIONS
31 LOII	ICATIONS
CONTACT CARRIER MATERIAL/COLOR	TPU/YELLOW
MOLDED HEAD MATERIAL/COLOR	TPU/YELLOW
CONTACT MATERIAL/PLATING	BRASS/GOLD
COUPLING NUT MATERIAL/FINISH	BRASS/NICKEL
RATED CURRENT [A]	9.0 A
RATED VOLTAGE [V]	600 V
OUTER JACKET MATERIAL/COLOR	PVC/YELLOW
CONDUCTOR INSULATION MATERIAL	PVC
NUMBER OF CONDUCTORS [AWG]	3x16 AWG
TEMPERATURE RANGE	-40°C to +105°C (-40°F to +221°F)
PROTECTION CLASS	MEETS NEMA 1,3,4,6P AND IEC IP67

CTS Part Number: CABLE, TURCK, RKM35D-6M

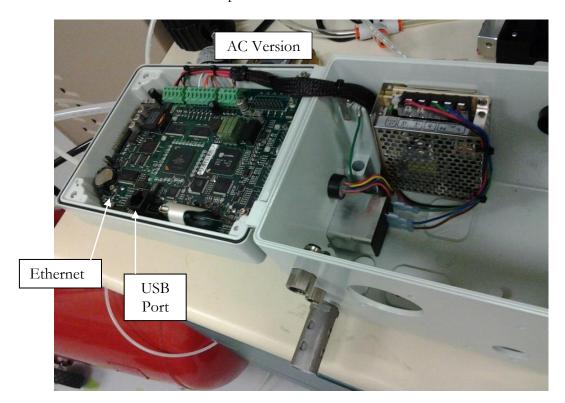

5/23/2017 6 www.cincinnati-test.com

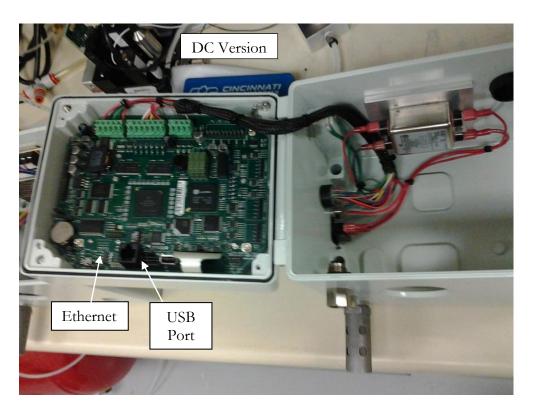
Supply Connections


After mounting or locating the instrument, connect the inlet air or vacuum supply to the inlet port shown in the pneumatic diagram supplied with your specific instrument, as this will vary depending on instrument configuration. To reduce future maintenance requirements, install the recommended 0.3 and 5.0-micron coalescing filters in the air supply connected to the instrument. Be certain to replace the filter elements at least quarterly as preventative maintenance.


Port	Connection Type	Pressure Rating
Test Supply	1/4" FNPT	Vacuum OR 0-250 psi
Pilot	1/8" FNPT	0-90 psi

Front View


5/23/2017 7 www.cincinnati-test.com



5/23/2017 8 www.cincinnati-test.com

Open Door View

5/23/2017 9 www.cincinnati-test.com

User Interface Navigation

There are multiple monitoring screens available for the instrument. Selecting the Monitor Icon will give you access to all of these screens.

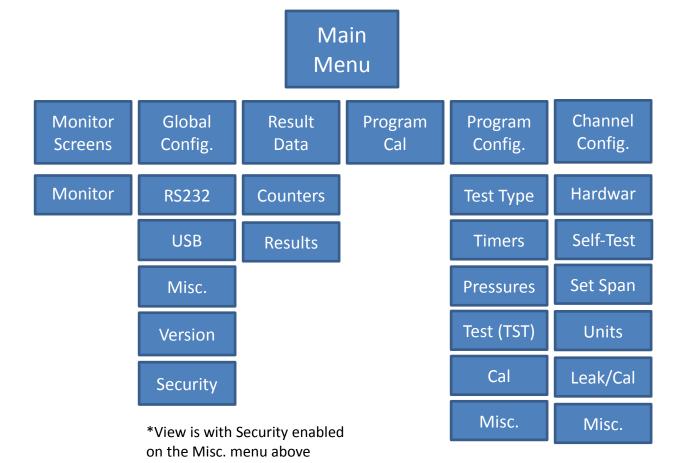
The instrument is designed with a simple graphical icon-based interface. The main menu is activated by pressing the Main Menu button.

The Arrow/Enter Selection buttons are used to navigate through the icons on the screen and select the appropriate menus. The center arrow is the Enter button. It is used to select parameters for editing and saving the edits once they are complete.

The Cancel/Back button is used go back to the previous menu. Multiple presses will eventually exit you out of the menu structure entirely and place you on the Monitor Screen. This button is also used to cancel out of any edits before saving.

The Information button is used to get a help screen that is associated the parameter corresponding to where the cursor is located.

The instrument is capable of storing up to 4 different programs. Switching between these programs is done with the Program Select Buttons on the front of the instrument. The current program is shown in the lower right hand corner of the screen designated by "P" and then a two-digit number corresponding to the current program number.


Note: The Program may also be changed using Digital I/O (see Chapter 6) or using RS232 Communication methods (see Chapter 7).

5/23/2017 10 www.cincinnati-test.com

Menu Structure

Below is an overview of the menu structure for the instrument.

Note: Not all of the menus are available for all configurations and Test Types.

5/23/2017 11 www.cincinnati-test.com

This page is intentionally blank.

5/23/2017 12 www.cincinnati-test.com

Chapter 2 – Setup

In this chapter you will be asked how you intend for the instrument to function to conduct the test or sequence of tests for the application.

Setting up the instrument to meet specific application requirements is most effectively accomplished by answering a few questions. These questions will guide you through the initial stages of the setup and point you to the appropriate chapters that detail specific instructions based on the answers.

It is highly recommended that each type of part being tested, whether they differ in volume or construction, have their own set of parameters defined in the instrument via individual Programs. Pressure decay leak testing is a volume dependent function. In certain cases, it is possible to group "like parts" together to use the same parameters. In this case we recommend you talk to a CTS applications specialist to assure proper functionality.

Selection of Test Types

The first step in setting up the instrument is to select the type of test you would like to conduct via the prepackaged test sequences. Once you set up one type of test repeating this step under a different program will enable you to configure up to 4 different test configurations. The **Test Type Table** on the following page includes the available test types for the Sentinel C20WE instrument. A brief description, and the associated chapter that details the pre-packaged test program. The availability of these test types are based on the configuration of the instrument.

Once you determine which test type is appropriate for your application go to Program 1 (press the + or – buttons until you see a P01 in the lower right hand corner of the screen.

Press the Main Menu button to view the Main Menu screen.

Select Program Config menu using the Arrow/Enter Selection buttons.

Select Test Type Icon using the Arrow/Enter Selection buttons.

Select the appropriate test type using the Enter button to enable editing and then the up and down arrows to view the options. When you see the desired selection press the Enter button to select.

5/23/2017 13 www.cincinnati-test.com

To simplify the instructions in this manual, the steps on the previous page are reduced to something similar to the following:

The Test Type menu is located in Main Menu > Program Config > Tst type icon.

Test Type Table

TEST TYPE	DESCRIPTION	
Pressure Decay-ΔP <u>Chapter 3</u>	Measures the Pressure Loss (ΔP) over a fixed time. Determined from the pressure loss over the duration of the test timer. The result is presented in units of delta pressure.	
Pressure Decay- $\Delta P/\Delta T$ <u>Chapter 4</u>	Measures the Pressure Loss ($\Delta P/\Delta T$) over unit time. Determined from the pressure loss over the duration of the test timer divided by the test time. The result is presented in units of delta pressure over delta time.	
Pressure Decay – Leak Std <u>Chapter 5</u>	Calculates the Leak Rate, based upon pressure loss. Determined from the pressure loss over the duration of the test timer relating to the pressure loss of the leak standard and of the non-leaking master part. The result is presented in units of flow.	

Before we begin setting the parameters of the program we need to determine some of the capabilities and features required for the application.

5/23/2017 14 www.cincinnati-test.com

Channel Configuration

Setting the Units of Measure

The instrument has the capability to utilize different units of measure for each configured program. In order to keep things simple and user friendly if you always use the same units of measure, you can set the units in one place and have them apply instrument wide. This is done in the Channel Configuration menu.

Question:

Are you planning to use the same units of measure for every program?

Yes: Please press the Main Menu button. Select the Channel Config Icon. From the Channel Config menu select the Units Icon. Change the Unit/Prec Define parameter to "Channel". Set the desired units on that same screen. These units will apply to every program.

No: Please press the Main Menu button. Select the Channel Config Icon. From the Channel Config menu select the Units Icon. Change the Unit/Prec Define parameter to "Program". The Unit Icon will now appear under the Program Config menu. When a program is created, the units for the program will use the units under the Channel Config menu as the default settings but now can be changed per program.

Note: The units set on the Channel Config screen are also the units used for Self-Test and pressure transducer Set/Span routines.

Note: The precision displayed for each unit may also be set on this screen.

5/23/2017 15 www.cincinnati-test.com

Setting the Leak Standard Values

The instrument has the capability to utilize different leak standards for each configured program that uses a leak standard. In order to keep things simple and user friendly if you always use the same leak standard, you can set the leak standard value and pressure in one place and have it apply instrument wide to any program that uses a leak standard. This is done in the Channel Configuration menu.

Question:

Are you planning to use the same leak standard for every program that requires a leak standard?

Yes: Please press the Main Menu button. Select the Channel Config Icon. From the Channel Config menu select the Leak/Cal Icon. Change the Leak Std/Cal Define parameter to "Channel". Set the leak standard value and the pressure at which it was calibrated on that same screen. This leak standard value will apply to every program that utilizes a leak standard for calibration.

No: Please press the Main Menu button. Select the Channel Config Icon. From the Channel Config menu select the Leak/Cal Icon. Change the Leak Std/Cal Define parameter to "Program". The leak standard parameters will now appear on the TST:*** screen under the Program Config menu. When a program is created, the units for the program will use the leak standard value under the Channel Config menu as the default settings but now can be changed per program.

Note: Every time the leak standard value changes due to a calibration or when a new leak standard is used this value needs to be modified to reflect the new value.

Note: The parameter that determines whether the physical leak standard is located either inside the instrument or connected to a port on the outside is also located in the Leak/Cal Menu or the TST menu.

Remember: Press the information button with the cursor on that parameter if you want to know the definition of the options.

5/23/2017 16 www.cincinnati-test.com

Program Configuration

Now that you have created a program and set the channel level parameters, it is time to set the regulators to the correct test pressure.

Setting the Pneumatic Regulator

Setting the regulator is done via the Channel Config screen under the Set/Span menu. In order to set the regulator, the test port will need to be blocked which will allow the instrument to hold pressure. This may be done with the test port plug, mounted to the bottom of the instrument or with a Self-Test cap, placed in the test port fitting.

Setting the Test Parameters

It is time to set the test parameters to fit your application. Please refer to the chapter associated with the test type chosen from the <u>Test Type Table</u> located earlier in this chapter.

Verifying Setup

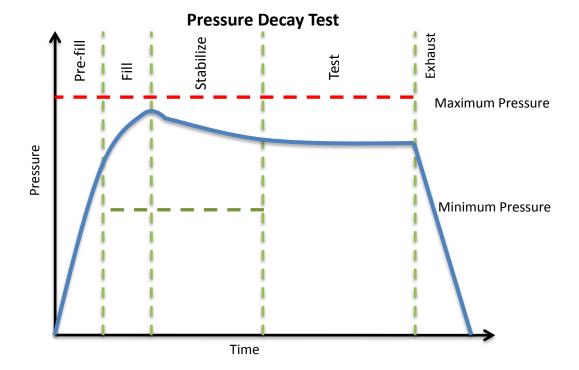
Once you have everything programmed, run a repeatability study based on your company's quality standards to assure you are getting the results you desire.

Security

Now that the instrument is setup the way you want, make sure to lock down the parameters that you don't want changed until a key or password is used. See <u>Chapter 8</u> – Security.

5/23/2017 17 www.cincinnati-test.com

This page is intentionally blank.


5/23/2017 18 www.cincinnati-test.com

Chapter 3 – Pressure Decay-△P

This chapter explains the theory and parameters for conducting a pressure decay test measuring a pressure loss over time. The result of this test is the pressure loss (or gain for a vacuum test) measured over a fixed period of time, presented in units of pressure.

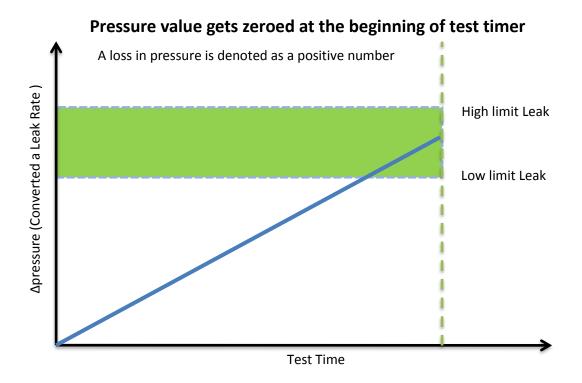
The basic principle of operation of a pressure decay leak test instrument is to fill the test part to a specified target test pressure, isolate the test part from the source air and allow the pressure to stabilize, and then measure the pressure loss due to a leak over a defined time.

The Charts below give an overview of the parameters used to setup a Pressure Decay ΔP Test. The Tables that follow give detailed descriptions of each parameter.

5/23/2017 19 www.cincinnati-test.com

Timer Parameters

The Timers menu is located in the Main Menu > Program Config > Timers icon.


Timer	Description
Prefill	Checks for excessively leaking parts or lack of pressure. May be set as a % of fill time (Default), for fixed fill time tests, or a not to exceed timer. See the <u>Chapter 9</u> on Features to change the functionality of the Prefill Timer. Maximum time to reach the minimum pressure. If the variable is set to a not to exceed timer, this segment will exit to the next once the Minimum Pressure value is reached.
Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.
Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.
Test	The precise time over which to measure pressure drop or decay or the precise end time to measure pressure rise.
Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.

Pressure Parameters

The Pressure menu is located in the Main Menu > Program Config > Pressure icon.

Pressure	Description
Minimum Pressure	This value is not visible. This value is set automatically to a -20% window with a minimum delta of 0.5 PSI and a max delta of 20.0 PSI. It is the value that must be reached before the Prefill set point is reached and must be maintained through fill and stabilization segments or the testing cycle will end as a Severe Leak.
Target Pressure	The specified test pressure for the part. For vacuum test pressures enter as positive values if psiv was selected as the pressure unit. Enter as a negative if psig was selected as the pressure unit. (i.e. A test pressure 9.7 psia would entered as 5 psiv or -5 psig.) Pressure loss is corrected based on the ratio of actual test pressure and the Target Pressure.
Maximum Pressure	This value is not visible. This value is set automatically to a +20% window with a minimum delta of 0.5 PSI and a max delta of 20.0 PSI. The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle will end as an Over Pressure Malfunction.

5/23/2017 20 www.cincinnati-test.com

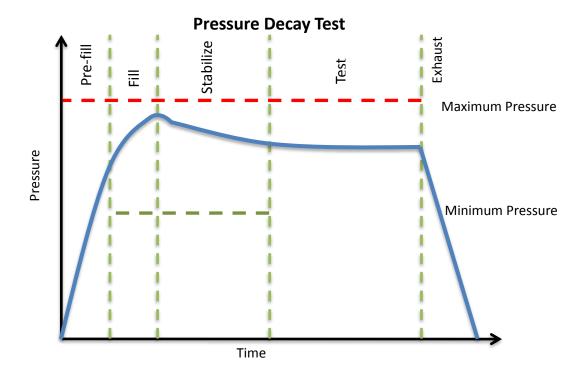
Test Parameters

The Test parameters menu is located in the Main Menu > Program Config > TST:PLO icon.

TST Parameter	Description
Low Limit Loss	Lower set point value used to evaluate test results.
High Limit Loss	Upper set point value used to evaluate test results
EDC Enable	Activates Environmental Drift Correction. See Appendix C
EDC Percentage	See Appendix C
EDC Quantity	See Appendix C

5/23/2017 21 www.cincinnati-test.com

This page is intentionally blank.


5/23/2017 22 www.cincinnati-test.com

Chapter 4 – Pressure Decay △P/△T

This chapter explains the theory and parameters for conducting a pressure decay test measuring the rate of change of pressure loss / time. The result of this test is the rate of pressure change measured over a selected unit of time.

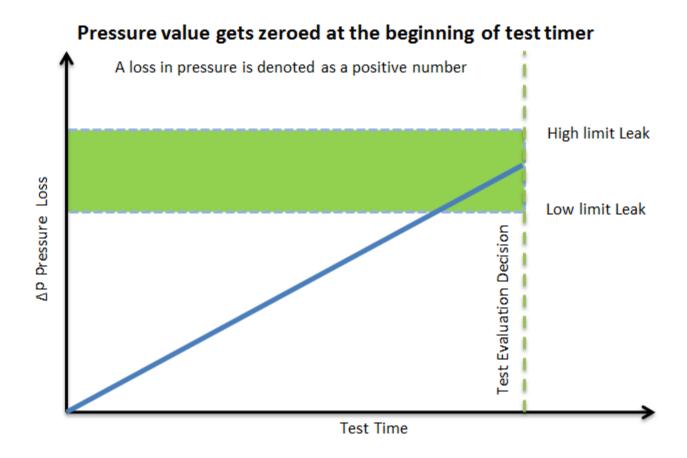
The basic principle of operation of a pressure decay leak test instrument is to fill the test part to a specified target test pressure, isolate the test part from the source air and allow the pressure to stabilize, and then measure the pressure loss due to a leak over a defined time.

The Charts below give an overview of the parameters used to setup a Pressure Decay $\Delta P/\Delta T$ Test. The Tables that follow give detailed descriptions of each parameter.

5/23/2017 23 www.cincinnati-test.com

Timer Parameters

The Timers menu is located in the Main Menu > Program Config > Timers icon.


Timer	Description
Prefill	Checks for excessively leaking parts or lack of pressure. May be set as a % of fill time (Default), for fixed fill time tests, or a not to exceed timer. See the Chapter 9 on Features to change the functionality of the Prefill Timer. Maximum time to reach the minimum pressure. If the variable is set to a not to exceed timer, this segment will exit to the next once the Minimum Pressure value is reached.
Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.
Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.
Test	The precise time over which to measure the rate of pressure change.
Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.

Pressure Parameters

The Pressure menu is located in the Main Menu > Program Config > Pressure icon.

Pressure	Description
Minimum Pressure	This value is not visible. This value is set automatically to a -20% window with a minimum delta of 0.5 PSI and a max delta of 20.0 PSI. It is the value that must be reached before the Prefill set point is reached and must be maintained through fill and stabilization segments or the testing cycle will end as a Severe Leak.
Target Pressure	The specified test pressure for the part. For vacuum test pressures enter as positive values if psiv was selected as the pressure unit. Enter as a negative if psig was selected as the pressure unit. (i.e. A test pressure 9.7 psia would entered as 5 psiv or -5 psig.) Pressure loss is corrected based on the ratio of actual test pressure and the Target Pressure.
Maximum Pressure	This value is not visible. This value is set automatically to a +20% window with a minimum delta of 0.5 PSI and a max delta of 20.0 PSI. The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle will end as an Over Pressure Malfunction.

5/23/2017 24 www.cincinnati-test.com

Test Parameters

The Test parameters menu is located in the Main Menu > Program Config > TST:DPT icon.

TST Parameter	Description
Low Limit Rate	Lower set point value used to evaluate test results.
High Limit Rate	Upper set point value used to evaluate test results
EDC Enable	Activates Environmental Drift Correction. See Appendix C
EDC Percentage	See Appendix C
EDC Quantity	See Appendix C

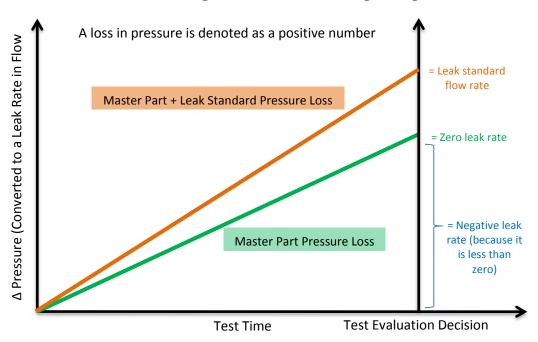
5/23/2017 25 www.cincinnati-test.com

This page is intentionally blank.

5/23/2017 26 www.cincinnati-test.com

Chapter 5 - Pressure Decay-Leak Std

This chapter explains the theory and parameters for conducting a pressure decay test and correlating the pressure loss to a leak rate using a leak standard. This test requires a two cycle calibration routine to correlate the pressure loss to a flow rate. The result of this test is presented in units of flow.



This test type utilizes a two-point calibration sequence with a non-leaking master part to record the zero leak pressure loss value and the additional pressure loss value due to the flow rate of the leak standard on the second calibration cycle.

The basic principle of operation of a pressure decay leak test instrument is to fill the test part to a specified target test pressure, isolate the test part from the source air and allow the pressure to stabilize, and then measure the pressure loss due to a leak over a defined time. The leak test instrument translates the pressure loss value measured over the fixed test time to a leak or flow rate.

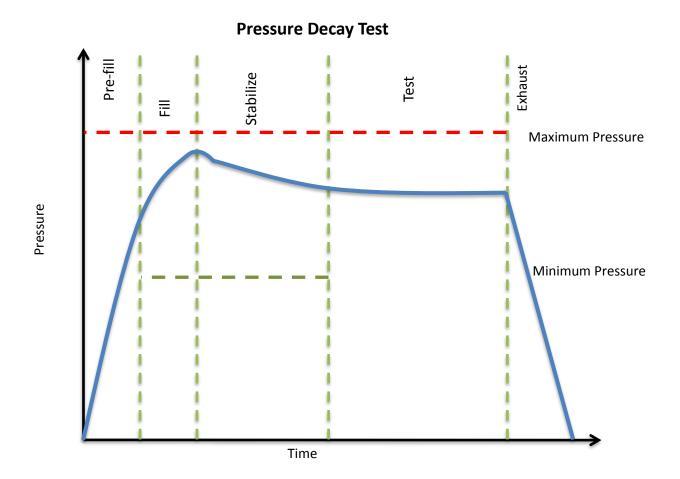
The Charts below give an overview of the parameters used to setup a Pressure Decay Test and correlating the results to a flow rate using a leak standard. The Tables that follow give detailed descriptions of each parameter.

Pressure value gets zeroed at the beginning of test timer

5/23/2017 27 www.cincinnati-test.com

Timer Parameters

The Timers menu is located in the Main Menu > Program Config > Timers icon.


Timer	Description	
Prefill	Checks for excessively leaking parts or lack of pressure. May be set as a % of fill time (Default), for fixed fill time tests, or a not to exceed timer. See the <u>Chapter 9</u> on Features to change the functionality of the Prefill Timer. Maximum time to reach the minimum pressure. If the variable is set to a not to exceed timer, this segment will exit to the next once the Minimum Pressure value is reached.	
Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.	
Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.	
Test	The precise time over which to measure pressure drop or decay or the precise end time to measure pressure rise.	
Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	
Relax	Timer used during Program Cal sequence as a delay between tests to allow the part to recover to repeatable virgin state. Usually short relax times result in decreasing pressure losses (flows) in successive tests.	

5/23/2017 28 www.cincinnati-test.com

Pressure Parameters

The Pressure menu is located in the **Main Menu > Program Config > Pressure** icon.

Pressure	Description
Minimum Pressure	This value is not visible. This value is set automatically to a -20% window with a minimum delta of 0.5 PSI and a max delta of 20.0 PSI. It is the value that must be reached before the Prefill set point is reached and must be maintained through fill and stabilization segments or the testing cycle will end as a Severe Leak.
Target Pressure	The specified test pressure for the part. For vacuum test pressures enter as positive values if psiv was selected as the pressure unit. Enter as a negative if psig was selected as the pressure unit. (i.e. A test pressure 9.7 psia would entered as 5 psiv or -5 psig.) Pressure loss is corrected based on the ratio of actual test pressure and the Target Pressure.
Maximum Pressure	This value is not visible. This value is set automatically to a +20% window with a minimum delta of 0.5 PSI and a max delta of 20.0 PSI. The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle will end as an Over Pressure Malfunction.

5/23/2017 29 www.cincinnati-test.com

Test Parameters

The Test parameters menu is located in the Main Menu > Program Config > TST:PLR icon.

TST Parameter	Description
Low Limit Rate	Lower set point value used to evaluate test results.
High Limit Rate	Upper set point value used to evaluate test results
Min Master Loss	Minimum pressure loss or flow allowed during either test in Program Cal routine. Prevents the acceptance of a calibration of a blocked part or test line.
Max Master Loss	Maximum pressure loss allowed during the first test in the Program Cal routine. Prevents the acceptance of a calibration with a leaking part or fixture leaks.
Min Mstr+Leak Loss	Minimum pressure loss allowed during the second test in the Program Cal routine. Prevents the acceptance of a calibration with a blocked part or test line.
Max Mstr+Leak Loss	Maximum pressure loss allowed during either test in the Program Cal routine. Prevents the acceptance of a calibration with excessive pressure loss due to part or fixture leaks. Set slightly higher than max loss during Program Cal.
Min Perform Factor	Minimum value for Performance Factor calculated at completion of Program Cal routine. Resultant evaluation of ratio of Master Part Loss to Master+Leak Loss, Test Pressure, and loss due to Leak Std.
Leak Std Cal Flow	Certified flow value of Leak Standard used to calibrate instrument. This parameter is only viewable in this location if the Leak Std/Cal Define parameter is set to "Program".
Leak Std Cal Press	Certified pressure at which Leak Standard Flow was calibrated. This parameter is only viewable in this location if the Leak Std/Cal Define parameter is set to "Program".
Quik Test Enable	Activates Quik Test. See Appendix B
Quik Test Timer	Options include 10%, 25%, 50%, 75%, or 90% See <u>Appendix B</u> .
Quik Test LL Band	See Appendix B

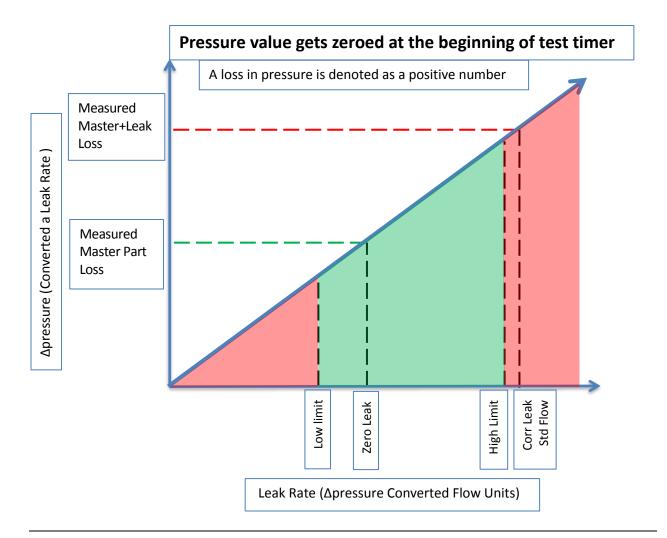
5/23/2017 30 www.cincinnati-test.com

TST Parameter	Description
Quik Test HL Band	See Appendix B
EDC Enable	Activates Environmental Drift Correction. See Appendix C
EDC Percentage	See Appendix C
EDC Quantity	See Appendix C

5/23/2017 31 www.cincinnati-test.com

Program Calibration

In order to convert the pressure loss measured by the instrument to a leak (flow) rate, the instrument uses a leak standard and needs to run the "Program Cal" procedure. This procedure requires at least one known non-leaking part referred to as a "master part." This procedure tests a non-leaking master part connected to the instrument using the timers and pressures established for the program. The procedure automatically tests the non-leaking master part twice with the Relax timer delay between tests. Within each program that uses a leak standard, Program Cal can be configured to use one of four methods. See **Setting the Cal Method and Leak Standard Location** in <u>Chapter 9</u> – Features.



Remember: The Leak/Cal menu has a parameter called Leak Std/Cal Define that determines the location for the leak standard settings.

When set to "Channel", leak standard settings are located in the Channel Config menu.

When set to "Program", leak standard settings are located in the Program menu.

Determine how you plan to use your leak test instrument. Review Setting the Leak Standard Values section on page 16. It is critical to make sure the leak standard values are set correctly for proper use.

5/23/2017 32 www.cincinnati-test.com

Initiating the Program Cal Sequence

To initiate a Program Cal sequence, press the shortcut key on the front of the instrument or go to Main Menu and select the Program Cal Icon. The Program Cal wizard will tell you to connect a non-leaking master part. Connect the non-leaking master part to the instrument. Push the

Start button to initiate the Program Cal sequence. The system will conduct an initial test of the non-leaking master part to measure the pressure loss associated with a non-leaking part. This represents the typical offset associated with testing parts within the environment of the test system. The pressure loss value is saved as the Master Part Loss. The system will conduct a second test on a non-leaking master part with a known calibrated leak standard included in the test. The pressure loss value result for this test is saved as the Master+Leak Loss.

Performance Factor

Upon the successful completion of the Program Cal routine, the display will show the calculated Performance Factor for the calibration. The Performance Factor is an estimate of the quality of the calibration. It combines the ratio of the Hi Limit Leak result to the non-leaking master part result, the test pressure, and difference between the Hi Lim result and the non-leaking master part result to scale its anticipated performance. This value ranges from 0 to 100. It is generally desirable to have a Performance Factor of 35 to 100. The actual acceptable Performance Factor can vary depending on the desired Gage R&R performance of the test. Here is the Performance Factor equation:

Performance Factor = Cal Ratio x Pressure Loss Penalty x Time Penalty x 100

The pressure loss penalty is greater for smaller pressure loss values. The time penalty is greater for shorter Test cycle timer values. Generally, longer stabilize and test cycle timer settings will produce higher Performance Factors and improved Gage R&R performance.

Note: The instrument will require a Program Cal Sequence if any parameters that affect the calibration are modified.

Conditions for a Successful Calibration

Several conditions must be met during the Program Calibration procedure for the instrument to accept and store the calibration results. The conditions are based on the following measurements or calculations:

- 1. Master Part Loss
 - a. Must be greater than the Min Master Loss limit
 - b. Must be less than the Max Master Loss limit
 - c. Must be less than the Master+Leak Loss measurement
- 2. Master+Leak Loss
 - a. Must be greater than the Min Mstr+Leak Loss limit
 - b. Must be less than the Max Mstr+Leak Loss limit
 - c. Must be greater than the Master Loss measurement
- 3. Performance Factor
 - a. Must be greater than the Min Perform Factor limit

If the procedure does not meet these conditions, error messages are displayed at the completion of tests.

5/23/2017 33 www.cincinnati-test.com

If the Program Cal routine is successfully completed, "PROGRAM CALIBRATION PASSED" will be displayed. If there are any problems during the Program Cal sequence an error will be displayed. If there is an error, see Appendix A - Message and Error Codes.

5/23/2017 34 www.cincinnati-test.com

Calibration Parameters

The Calibration parameters menu is located in the **Main Menu > Program Config > CAL:PLR** icon. These calibration parameters are values that are measured or calculated as a result of the Program Cal routine for a Pressure Decay-Leak Std test. The table below describes the parameters.

Parameter	Description
Performance Factor	Resultant evaluation of ratio of Master Part Loss to Master+Leak loss, Test Pressure, and loss due to Leak Std
Master Part Press	Measured pressure at the beginning of the test segment during the first test of the Program Cal routine for the non-leaking master part.
Master+Leak Press	Measured pressure at the beginning of the test cycle of second test during Program Cal routine for the non-leaking master part with the leak standard introduced to the pneumatic test circuit.
Master Part Loss	Measured pressure loss for the non-leaking master part during the first test of Program Cal routine
Master+Leak Loss	Measured pressure loss during the second test of Program Cal for the non-leaking master part with the leak standard introduced to the pneumatic test circuit.
Corr. Leak Std Flow	The calculated leak standard flow rate based on the Program Target Pressure, the leak standard calibrated pressure, and the leak standard calibrated flow rate.

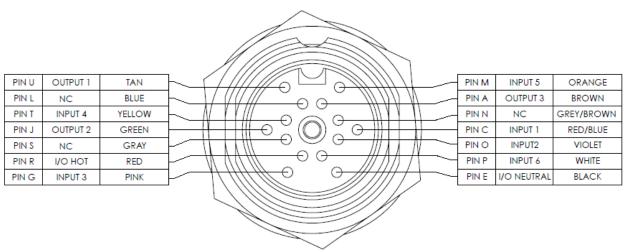
5/23/2017 35 www.cincinnati-test.com

This page is intentionally blank.

5/23/2017 36 www.cincinnati-test.com

Chapter 6 – Inputs and Outputs

This chapter explains the Input and Output (I/O) capabilities of the instrument.


The I/O parameters are located in **Main Menu > Program Config > Misc** icon.

The instrument is equipped with 6 digital inputs and 3 digital outputs. The instrument includes one user selectable digital input and one user selectable digital output to increase the functionality and simplify the application of various test requirements.

Input and Output Wiring

The instrument comes equipped with 6 sinking inputs and 3 sourcing outputs. Both inputs and outputs are 24VDC. The user selectable input (#6) and user selectable output (#3) may be defined.

Input and Output Connector Pinout

Digital Inputs 1-6 (24VDC NOMINAL)

Digital Outputs 1-3 (24VDC NOMINAL) Maximum current draw for an individual output is 500 mA Maximum current draw for all combined outputs are 1A

5/23/2017 37 www.cincinnati-test.com

Input and Output Table

Input	Function	Wire Color	Instrument Connector Pin	Cable Connector Pin	Wire Color
1	Start	Red/Blue	С	С	Red/Blue
2	Stop	Violet	О	О	Violet
3	Binary Program Select 1	Pink	G	G	Pink
4	Binary Program Select 2	Yellow	Т	Т	Yellow
5	Binary Program Select 3	Orange	M	M	Orange
6	Program Cal, Part Present, or None	White	Р	Р	White

Output	Function	Wire Color	Instrument Connector Pin	Cable Connector Pin	Wire Color
1	Accept	Tan	U	U	Tan
2	Reject	Green	J	J	Green
3	Malfunction, Seal Extend, In Cycle, Exhaust, or None	Brown	A	A	Brown

I/C Pow	Function	Wire Color	Instrument Connector Pin	Cable Connector Pin	Wire Color
1	Hot	Red	R	R	Red
2	Common	Black	Е	Е	Black

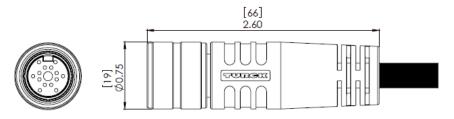
5/23/2017 38 www.cincinnati-test.com

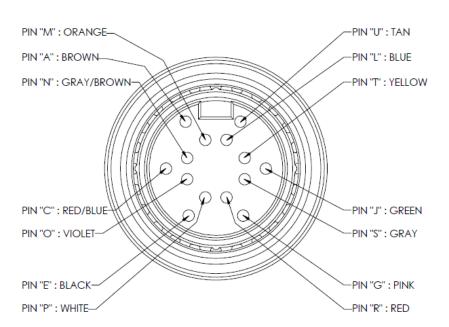
Inputs

Input	Description		
Start	Starts the active Program		
Stop/Reset	Stop test/Reset input is available to stop tests and reset the seal output (if programmed)		
Program Cal	The Program Cal input prepares the instrument to perform a Program Cal sequence. A Start input initiates the tooling motion and Program Cal sequence		
Part Present	The Part Present input must be high before a start test input is received. It also must go low between tests (after any tooling motion and before the start of the tooling motion for the next test). If more than one input is set to Part Present one meeting the criteria fulfills the requirements of this feature.		
Binary Program Selection	Programs can be remotely selected using the Binary Program Selection inputs or using one of the communication methods like RS232. The number of required inputs for Binary Program Selection depends on the highest program number of the program to which access is required. Program Numbers Binary Program Inputs 1 B1 2 B2 3 B1 & B2 4 B3		

Note: Programmable Inputs in the table above have bold font.

5/23/2017 39 www.cincinnati-test.com

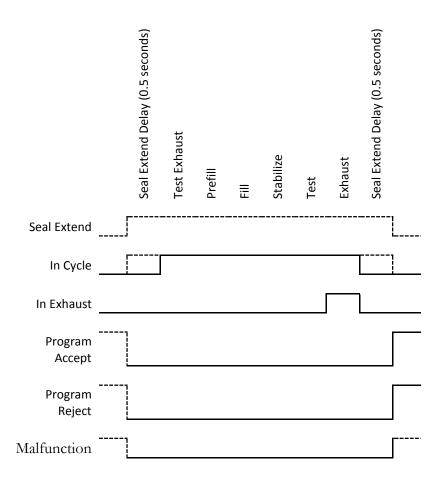

Outputs


Output	Description
Accept	The Program Accept output goes high at the completion of the tooling motion (if tooling is turned on) or at the completion of the Exhaust segment if the test passes.
Reject	The Program Reject output goes high at the completion of the tooling motion (if tooling is turned on) if the test fails. Program Rejects also include Severe Leaks when Minimum Pressure is not reached before reaching the Prefill set point or maintained during the Fill or Stabilization segments.
Malfunction	If a test has an error or disruption to the normal process and faults out of cycle before the normal completion, a malfunction will occur. If the error or disruption occurs during the testing cycle, the test will advance immediately to exhaust and the seal output will return low after exhaust. The Malfunction output goes high once the cycle is complete.
Seal Extend	This output goes high 0.5 seconds before the Prefill segment begins and goes low 0.5 seconds after the Exhaust segment is complete. This option is intended to activate a seal such as a CTS Connect.
In Cycle	This output goes high when the start signal is received and remains high until the entire cycle is complete.
In Exhaust	The Exhaust segment output goes high during the Exhaust segment. This output is frequently used to open an external exhaust valve that vents the test air from the part through a larger valve for fast exhaust or to bypass the instrument and avoid polluting the instrument pneumatics with dirty part air.

Note: Programmable Outputs in the table above have bold font.

5/23/2017 40 www.cincinnati-test.com

14 Pin Digital I/O Cable Diagram and Pinout Table



CTS Part Number: CABLE, TURCK, BKM14-002-6

PIN ID & COLOR	OUTPUTS	INPUTS	POWER
A = BROWN	OUTPUT 3		
C = RED/BLUE		INPUT 1	
E = BLACK			I/O COMMON
G = PINK		INPUT 3	
J = GREEN	OUTPUT 2		
L = BLUE			
M = ORANGE		INPUT 5	
N = GRAY/BROWN			
O = VIOLET		INPUT 2	
P = WHITE		INPUT 6	
R = RED			І/О НОТ
S = GRAY			
T = YELLOW		INPUT 4	-
U = TAN	OUTPUT 1		

5/23/2017 41 www.cincinnati-test.com

Output Timing Diagram

5/23/2017 42 www.cincinnati-test.com

Chapter 7 – Communication

The instrument is able to communicate over RS232. This chapter explains how to setup communication with the instrument and how to decode the test results output.

The communication parameters are located in Main Menu > Global Config icon.

Establishing RS232 Communication

The RS232 parameters are located in **Main Menu > Global Config > RS232 1.** The first step in establishing RS232 communication with the instrument is to set the RS232 1 Interface parameter to "2-way" communication. Next, set the Baud parameter to match the baud rate of the device that will be communicating with the instrument. The options are: 115200, 57600, 38400, 19200, or 9600 bits per second.

In order to set the RS232 parameters, select the RS232 1 icon on the Global Config screen. The first step in establishing RS232 communication with the instrument is to set the RS232 1 Interface parameter to "2-way" communication. Next, select the baud rate that matches the baud rate of the device that will be communicating with the instrument. This is done via the RS232 1 Baud parameter. The options are: 115200, 57600, 38400, 19200, or 9600 bits per second.

Note: The instrument always uses 8 data bits. The Parity is set to None. The instrument uses 1 stop bit. The flow control is always set to None.

Once you have established communication with the desired device you may select whether you want the instrument to "echo" back each character it receives on the TCP/IP 1 communication port. This setting is located in the **Main Menu > Global Config > RS232 1** icon > **RS232 1 Echo**. If the parameter is set to "ON", the instrument will output an echo for each character it receives. If this parameter is set to "OFF", the instrument will not echo anything.

5/23/2017 43 www.cincinnati-test.com

Understanding the Header Information

All of the information that the instrument sends over the communication ports is preempted by header information. This data is sent to help parse specific information. This header information is in the format XXYYZZZ H. The header is followed by a Tab as shown in the table below:

Header	Description
XX	8-Bit CRC in HEX. Used for error checking.
YY	Sequence Code in HEX. The value increments from 01 to FF. This value can be used as a verification that all data has been received and nothing was missed by the receiving device.
ZZZ	Data length in HEX.
	Tab
Н	Data Type Code. See Data Type Code Table
	Tab

Note: For the most up to date <u>Data Type Codes</u> type "TABLE HEADER" into the instrument via the communication port. The instrument will return a list of Data Type Codes and descriptions.

Data Type Code	Description
V	Variable Edit
L	List
M	Message
Q	Result List
T	Streaming Started
S	Streaming Value
X	Streaming Stopped
R	Result

5/23/2017 44 www.cincinnati-test.com

Test Results via RS232 communication

These settings are located in: Main Menu > Global Config > RS232 1 icon > RS232 1 Results. To command the instrument to send the test result data automatically once the test is complete, set the parameter RS232 1 Results is set to "ON." The table below shows the format of the Test Result Data.

	Number of			
Parameter	Characters	Format	Example Text	Description of Example
Channel #	4	C##	C01	Channel 1
Program #	4	P##	P01	Program 1
Time	13	HH:MM:SS.XXX	16:15:14.123	16 hrs, 15 mins, 14.123 secs
Date	9	MM/DD/YY	40179	02/03/2016
Unique Id	11	##########	0000098353	Unique test number
Program Evaluation	3	#	A	Accept
Test Field			Test Results	
Test Type	8	###	PLR	Pressure Decay-Leak Std
Test Evaluation	2	#	P	Pass
Test Data 1	22	TDI Data Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit
Test Data 2	22	TDI Data Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit
TAB				Tab
TAB				Tab
CR				Carriage Return
LF				Line Feed

Note: For the most up to date <u>Test Data Identifier Codes</u> type "TABLE" into the instrument via the communication port. The instrument will return a list of Data Type Codes and descriptions.

Note: For the most up to date <u>Test Evaluation Codes</u> type "TABLE EVALUATION" into the instrument via the communication port. The instrument will return a list of Data Type Codes and descriptions.

Note: For the most up to date <u>Program Evaluation Codes</u> type "TABLE RESULT" into the instrument via the communication port. The instrument will return a list of Data Type Codes and descriptions.

5/23/2017 45 www.cincinnati-test.com

Streaming Measured Data

The instrument has the ability to stream measured data via the RS232 communication port in real time while the test is being conducted. This data may be collected and used for analysis. The data is comma delimited. The table below shows the format of the streaming data.

Parameter		Format	Example Text	Description of Example
Channel #	Comma Delimited	C##	C01	Channel 1
Program #	Comma Delimited	P##	P01	Program 1
Segment	Comma Delimited	XXX	PRF	Prefill Segment
Test Data	Comma Delimited	TDI Value Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit
TAB				Tab
TAB				Tab
CR				Carriage Return
LF				Line Feed

Note: For the most up to date <u>Segment Codes</u> type "TABLE SEGMENT" into the instrument via the communication port. The instrument will return a list of Data Type Codes and descriptions.

Note: For the most up to date <u>Test Data Identifier Codes</u> type "TABLE VARIABLE" into the instrument via the communication port. The instrument will return a list of Data Type Codes and descriptions.

Parsing Data Packets

For users who are trying to parse data packets from the instrument, any line beginning with an asterisk "*" should be parsed to be ignored, as these lines will not have header information to be parsed. An example of these types of lines would be the Root menu displayed at instrument boot.

5/23/2017 46 www.cincinnati-test.com

Reports

The instrument is capable of generating a variety of reports through RS232. The reports available are in the table below.

Report	Description
Cur Program Res	Reports all of the test results for the current active program. The current program can be seen in the bottom right hand corner of the display.
All Results	Reports all of the test results in the instrument memory.
Chan Last 1000	Reports the last 1000 test results.
Chan Last 100	Reports the last 100 test results.
Chan Last 20	Reports the last 20 test results.
Chan Last Res	Reports the last test result.
Global Config	Reports all of the parameters and their settings within the Global Config menu.
Channel Config	Reports all of the parameters and their settings within the Channel Config menu.
Cur Program Config	Reports all of the parameters and their settings within the current active program. The current program can be seen in the bottom right hand corner of the display.
Program Config	Reports all of the parameters and their settings within the Program Configmenu.
Regulator Cal	Reports the Electronic Regulator Calibration data if the instrument is configured with an electronic regulator.
Transducer Ver	Reports the Transducer Verification data of the last Transducer Verification conducted on the instrument.
Transducer Cal	Reports the Transducer Calibration data of the last Transducer Calibration conducted on the instrument.
Channel Cntrs	Reports all of the counters in the instrument

5/23/2017 47 www.cincinnati-test.com

This page is intentionally blank.

5/23/2017 48 www.cincinnati-test.com

Chapter 8 – Security

This chapter explains the instrument security parameters. The Security menu allows flexibility in allowing access or locking functions with a password.

It is located in **Main Menu > Global Config** menu. The **Security** icon may be hidden. To make the Security icon visible, the setting is located in **Main Menu > Global Config > Misc** icon. Select **Edit/View Security**, press **Enter**, use arrows to select "On", and press **Enter**. You will be taken to the Security menu. The Security icon is now visible at the bottom of the Global Config screen.

When the instrument is secured with any of the settings in the Security menu, a password is required to unlock that function of the instrument. The default password is "5555." It is important that this be changed upon configuring the password. Remember to write down the new password. If the new password is forgotten, Cincinnati Test Systems can provide a back door password that changes every hour.

The table below describes the all of the security settings available in the C20WE menu.

Parameter	Description	
Secure Calibration	Applies security to performing a program calibration.	
Secure Instrument	Applies security to changing any parameters within the instrument.	
Secure Monitor Screen	Applies security to the monitor screen If set to Yes the user will not be able to view any other screens other than the last monitor screen viewed before being secured	

5/23/2017 49 www.cincinnati-test.com

This page is intentionally blank.

5/23/2017 50 www.cincinnati-test.com

Chapter 9 – Features

This chapter explains essential features of the instrument.

Setting the Date & Time

The Date and Time parameters are located in **Main Menu > Global Config > Misc** icon. The date and time are set at the factory. If you are in a different time zone, it may be desirable to change the date and time on the instrument. The date format can be modified with the Date Format parameter. The time format is 24 hour and cannot be changed.

Changing the Instrument Language

The instrument is a multi-language instrument and may be modified. The language setting is located in **Main Menu > Global Config > Misc** icon.

Open Internal Leak Standard

The instrument may be configured with one or more internal leak standards. Internal leak standard valves may be manually forced open during a test to simulate a leak in the test circuit. Open Leak Std is located in Main Menu > Channel Config > Leak/Cal icon.

Note: If the instrument is configured with an internal leak standard, the instrument automatically introduces the leak standard during the appropriate segments of a Program Cal routine.

5/23/2017 51 www.cincinnati-test.com

Self-Test

The Self-Test diagnostic provides a way to check the integrity of the instrument's pneumatic circuit. This is a great way to isolate a potential leak by allowing the user to verify the instrument is working correctly. By isolating the instrument from the test part and the external tooling and plumbing, this special test will verify that the instrument is performing properly and leak free.

The Self-Test diagnostic is located in Main Menu > Channel Config > Self-Test icon.

Parameter	Description
Self-Test Pressure	Enter the pressure setting of the pressure source chosen to use for the Self-Test diagnostic routine.
Self-Test Source	Specifies the pressure source to utilize for the Self-Test diagnostic routine.
Self-Test Level	The instrument performs two levels of Self-Test. Level 1 is a general integrity test of the pneumatic circuit. Level 2 is more stringent and should be used when testing for low leak or flow rates.
Start Self-Test	Starts the diagnostic routine.

Note: It is important that the test port is plugged with the Self-Test cap during a Self-Test.

Update Firmware

The instrument is able to update the firmware via the USB port. The file can be sent by email or a USB memory stick. If the file is sent by email, it will be in a zip file that will create the folder structure on the USB memory stick that the instrument needs to locate the file. Once the file is on a USB memory stick, insert the stick into the USB port. Go to the Global Config menu and select the USB Icon. Change the parameter Update Firmware to "Yes" in order to start the update process. The instrument will list all of the firmware version files on the screen. Select which file you would like to use. This will start the update process.

Note: If the firmware version is a minor revision all of the parameter settings will be kept the same. However, if the firmware version is a major revision all of the settings will be cleared. Please see the firmware documentation to determine if the firmware version you are upgrading from will cause the settings to be cleared.

5/23/2017 52 www.cincinnati-test.com

Changing the Functionality of the Prefill Timer

When the Prefill Timer is set to a Percent of the Fill Timer, which is the default value, the Minimum Pressure must be met before the value in the Prefill is exhausted. For example, if the Fill Timer is set to 10 seconds and the Prefill Timer is set to 80% then the part must reach Minimum Pressure within 8 seconds. This allows for fixed fill times to be utilized.

When the Prefill Timer is set to a Not to Exceed Timer, the instrument will begin the cycle in the Prefill segment. Once the pressure reaches the Minimum Pressure, the instrument will exit the Prefill segment, regardless of any time remaining, and enter the Fill segment.

To change the function of the Prefill timer go to the Program Config menu and select the Misc Icon. The parameter called Prefill Method changes the Prefill functionality.

Pressure Correction

In several test types the instrument uses pressure correction to enhance the performance of the instrument. If the actual test pressure is different than the Target Pressure, the pressure loss value is corrected. **Pressure Correction** is always on and cannot be turned off.

5/23/2017 53 www.cincinnati-test.com

Setting the Cal Method and Leak Standard Location

The Cal Method parameter is located in the Main Menu > Channel Config > Leak/Cal icon when the Leak Standard is set to "Channel". The Cal Method parameter is located in the Main Menu > Program Config > Misc icon when the Leak Standard is set to "Program".

Select	Description	Explanation
Parameter	Λ , , , , , 1'	A
One Part – Int. LS	Automatic test cycling using Leak Standard	Automatically tests same non-leaking master part twice; the second time using a calibrated leak standard
	located inside the instrument	mounted on the internal manifold.
One Part -	Manual testing of same	Tests same non-leaking master part twice; the second
Ext LS	part using Leak	time using calibrated leak standard provided externally
	Standard provided	from the instrument. The instrument will prompt the
	outside the instrument	operator to attach the leak standard when it is time.
Multi-Part	Manual testing of two	Tests two different non-leaking master parts using the
- Int. LS	parts using a Leak	calibrated leak standard mounted on the internal
	Standard located inside	manifold. Any tooling must retract between tests to
	the instrument	change parts. A Start signal is required either via the
		user interface or remotely using programmed start test
		logic to initiate the second test after changing non-
		leaking master parts.
Multi-Part	Manual testing of two	Tests two different non-leaking master parts using the
-Ext LS	parts using Leak	calibrated leak standard provided externally from the
	Standard provided	instrument. Any tooling must retract between tests to
	outside instrument	change parts. A Start signal is required either via the
		user interface or remotely using programmed start test
		logic to initiate the second test after changing non-
		leaking master part with leak standard.

Valve Detection

Valve Detection is located in **Main Menu > Channel Config > Hardware icon** with the options of **Enabled** and **Disabled**. This feature, when enabled, allows the instrument to monitor for the presence of pneumatic valves via electronic load detection.

Note: This parameter is only available for viewing, and the user cannot change the settings.

5/23/2017 54 www.cincinnati-test.com

Chapter 10 – Instrument Calibration

This chapter explains the Set/Span parameters for the pressure transducer.

These parameters are located in **Main Menu > Channel Configuration > Set/Span** icon.

Verifying a Transducer

The transducer verification process is very similar to the calibration process. You must enter the external master gauge value at each point to step through the sequence. You will be prompted to input values so the *Transducer Verification Report* has this data for later review. This feature does not affect the calibration of the instrument.

Note: A Transducer Verification Report may be downloaded from the

instrument if desired. See the Reports section on the last page

of Chapter 7 - Communication.

Calibrating a Transducer

The transducers have been calibrated at the factory. A calibration of the transducer should be done periodically according to the quality standards at your facility. The instrument is capable of doing a multiple point calibration. The number of points is determined by the user. You may select up to 32 points for calibration. You will need a calibrated master pressure gauge to calibrate the transducer on the instrument. On the Set/Span menu select which transducer you want to calibrate. Press Enter to enable the edit function. Change the value to "Yes". The following menu will display on the screen.

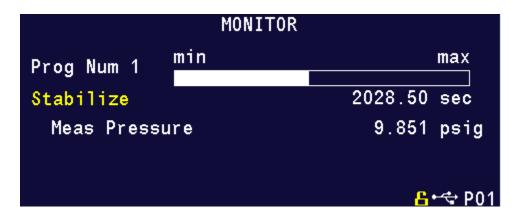
Pressure Transducer Cal 1 (Pressure)

Parameter	Description
Number of Points The number of setpoints to be used for the transducer calibration procedure. Value must be 2 to 32.	
Setpoints 2 – 32	The user is able to define the setpoints at which the calibration occurs. The number of setpoints shown is based on the number of points selected in the parameter above.
Linearity Limit	The maximum allowed linearity variance for a successful calibration.
Start Calibration	Commences the calibration procedure. A wizard will walk you through the calibration process.

Note: A Transducer Calibration Report may be downloaded from the instrument if desired. See the Reports section on the last page of Chapter 7- Communication.

5/23/2017 55 www.cincinnati-test.com

This page is intentionally blank.


5/23/2017 56 www.cincinnati-test.com

Chapter 11 – Monitor Screen Examples

This chapter is a quick reference for the screens that display at power on and when running the various tests established for your requirements.

Monitor Screen Examples

The Monitor Screen provides a visual indication of test execution. During test operation the program name, phase of execution, remaining execution time, measurement data, and a bar graph with appropriate limits are all displayed.

5/23/2017 57 www.cincinnati-test.com

This page is intentionally blank.

Chapter 12 – Results Screen Examples

This chapter is a quick reference for the screens that display when running the various tests established for your requirements. These are examples; your screens will display similar but different data.

Result Data Screens

Counters Screen:

Results Screen:

```
RESULT DATA Counters
                        <RESULTS>
                                    Counters
P03: 02/23
                   17:28:18
                                     ACCEPT
             0.56773∆psig
  PLR
                                 2.011 sccm
                   17:28:07
P03: 02/23
                                 CAL PASSED
             0.56634Apsig
  PLR.
                                     100 PF
 P03: 02/23
                   17:27:54
                                MASTER PART
             0.01939 psig
                                17.436 psig
```

5/23/2017 59 www.cincinnati-test.com

This page is intentionally blank

5/23/2017 60 www.cincinnati-test.com

Appendix A – Messages & Error Codes

This chapter is a quick reference for the messages and error codes that appear on the screen and through the communication ports.

Test Messages & Errors

Note: For the most up to date <u>Test Message and Error Codes</u> type "TABLE EVALUATION" into the instrument via the communication port. The instrument will return a list of Data Type Codes and descriptions.

Message	Code	Description	Corrective Actions
Program Accept	A	Program evaluation was successful, for multiple tests – all tests passed	
Auto Setup Seq Complete	AC	Not Used	
Program Calibration Failed	AF	The test type is one that is capable of conducting a program calibration and this sequence was not successful.	
Master Part Complete	AM	The test type is one that is capable of conducting a program calibration. The first phase of the sequence is complete.	
Program Calibration Passed	AP	The test type is one that is capable of conducting a program calibration and this sequence was successful.	
Error: Anti-tie Down	AT	Not Used	
Error: Barcode Req to Start	BR	The instrument was expecting a barcode value to be received over the RS232 port. The configuration was set to require this action before a start command is enabled.	Check barcode reader wiring and functionality. Make sure the Baud Rates are set properly within the instrument.
Master+Leak Loss <master loss<="" td=""><td>C1</td><td>During the Program Cal routine, the instrument measured a greater pressure loss for the master part by itself than for the master part with the leak in the second test. This results in a Malfunction.</td><td>Increase the stabilization and possibly test time. Verify the leak standard.</td></master>	C1	During the Program Cal routine, the instrument measured a greater pressure loss for the master part by itself than for the master part with the leak in the second test. This results in a Malfunction.	Increase the stabilization and possibly test time. Verify the leak standard.

5/23/2017 61 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Master Part Loss> Max Mstr+Leak Loss	C2	The pressure loss during the first test of Program Cal on the master part exceeded the Max Mstr+Leak Loss set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend stabilization timer. Check that Max Mstr+Leak Loss was correctly set.
Master +Leak Loss > Max Mstr+Leak Loss	С3	The pressure loss during the second test of Program Cal on the master part exceeded the Max Mstr+Leak Loss set point. This results in a Malfunction,	Check the seals and master part for leaks, or extend stabilization timer. Check to leaks about leak standard. Check that Max Mstr+Leak Loss was correctly set.
Master Flow>Max M+L Flow	C4	The flow value during the first sequence of Program Cal on the master part exceeded the Max Mstr+Leak Flow set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check that Max Mstr+Leak Flow was correctly set.
Master Flow <min Master Flow</min 	C5	The master flow value was less than the Min Master Flow setpoint	Check that the Min Master Flow setpoint was set correctly. Verify the test line is connected to the test port and not the Self- Test plug.
Master+Leak Flow>Max M+L Flow	C6	The flow value during the second sequence of Program Cal on the master part exceeded the Max Mstr+Leak Flow set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check the leak standard. Check that Max Mstr+Leak Flow was correctly set.
Master Flow>Max Master Flow	C7	The flow value during the first sequence of Program Cal on the master part exceeded the Max Master Flow set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check that Max Master Flow was correctly set.

5/23/2017 62 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Master+Leak Flow <master flow<="" td=""><td>C8</td><td>The flow value during the second sequence of Program Cal on the master part was less than the Max Master Flow set point. This results in a Malfunction.</td><td>Check the seals and master part for leaks, or extend fill or test timers. Check the leak standard. Check that Max Master Flow was correctly set.</td></master>	C8	The flow value during the second sequence of Program Cal on the master part was less than the Max Master Flow set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check the leak standard. Check that Max Master Flow was correctly set.
Master Loss <min Master Loss</min 	С9	The pressure loss reading during the first test of Program Cal cycle for a pressure decay test was less than the Min Master Loss set point. This results in a Malfunction.	Check for blockage in the test line of part.
Cal Program Accept	CA	The Program Calibration was successful	
Calculation Error	CE	This result occurs from illegal program configurations, calculation errors when trying to convert vacuum pressures to positive pressure readings, and other occurrences.	
Cal Required - Limit Exceeded	CF	Not Used	
Min Perf Factor Error	СМ	The Performance Factor calculated at the end of Program Cal exceeds the Minimum Performance Factor set in the Test Factors	Check that the Minimum Performance Factor was correctly set. Increase stabilize and test timers
Calibration Required- Parameters Changed	СР	The stabilization or test timers, target pressure, Leak Std Flow, or Leak Std Pressure have been changed since the last calibration and therefore the part needs to be recalibrated. There is no output resultant.	Recalibrate the instrument for this program.
Cal Program Reject	CR	The Program Calibration was not successful.	
DP Transducer Fault	DF	Not Used	
DP Transducer Over Range	DO	Not Used	
DP Transducer Zero Bad	DZ	Not Used	
Elec Regulator Cal Complete	EC	Not Used	

5/23/2017 63 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Elec Regulator Cal Error	EE	Not Used	Check the wiring of the electronic regulator. Check that the entry of each pressure calibration point was correct.
Part Evac Fault	EF	Not Used	
Prog Error	EP	There was an error with the program. Please contact the factory.	
System Error - Service Req	ER	There was an error with the instrument. Please contact the factory.	
Flow Transducer Over Range	FO	Not Used	
Error: Excessive Flow	FX	The flow sensor measured a value out of its range. The instrument stopped the test sequence to prevent damage to the sensor.	
Flow Transducer Zero Bad	FZ	Not Used	Check the flow sensor wiring. If this happens multiple times, replace the flow sensor.
Helium Background Fault	HF	Not Used	
Invalid Calibration Data	ID	The calibration data has been corrupted or not properly entered. Please calibrate the unit again.	
I/O Fault	IF	Not Used	
Invalid I/O Configuration	IO	Not Used	
Invalid Program Selected	IP	The program selected does not exist or has not been configured.	Check BCD Input programming
Error: Duplicate Target Link	LD	Not Used.	
Master Loss>Max Master Loss	L0	The pressure loss reading during the first test of Program Cal cycle was greater than the Max Master Loss setpoint. This results in a Malfunction.	

5/23/2017 64 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Master+Leak Loss <min Master+Leak Loss</min 	L1	The pressure loss value during the second sequence of Program Cal on the master part was less than the Min Master +Leak Loss setpoint. This results in a Malfunction	
Leak Std Select Config Error	LE	Configuration Error. The instrument was not configured properly.	
Error: Link Execution Loop	LL	Not Used	Check programming of the Parent/Child Structures
Error: No Links Defined	LN	The instrument was expecting a link that did not exist	
Error: Dissimilar Link Order	LO	When the instrument conducts a Program Calibration sequence on linked programs, the links must execute in the same order for both the first and second sequences for Program Calibration.	
Error: Link Program is Parent	LP	Not Used	
Error: Link Prog Undefined	LU	Not Used	
Error: Part Mark Fault	MF	Not Used	Check operation of the part marker. Check wiring of the feedback input. Check wiring of the valve to fire the part marker.
No Event Occurred	NE	In a test that is looking for an event, this is the result when one does not occur.	
Above Target Pressure	PA	The instrument will stop conducting a test if the pressure rises above the target pressure window setting.	Check pressure regulator setting, cut seals, bad parts, or tooling control pressure by testing with master part
Below Target Pressure	PA	The instrument will stop conducting a test if the pressure drops below the target pressure window setting.	Check pressure regulator setting, cut seals, bad parts, or tooling control pressure by testing with master part

5/23/2017 65 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Part Not Changed	РС	The present input signal did not go low between tests to indicate that the part was removed from the fixture after the last test. This results in a Malfunction.	Remove the part after each test.
Part Configuration Error	PE	There was an error in the way the program was configured.	
Part Not Full	PF	This is an error in the Auto Setup Sequence that can occur if the instrument fails to fill the part to the desired pressure.	
Test Pressure High	РН	Test pressure was above the Maximum Pressure during fill or stabilization cycles resulting in a Malfunction	Check pressure regulator setting and tooling control pressures
Test Pressure Low	PL	Test pressure was below Minimum Pressure during fill cycle. This results in a severe leak.	
Error: Part Not Present	PP	The part present input is set for the active program and the input was not received.	Check the part presence sensor and input wiring
Part Not Stabilized	PS	This is an error in the Auto Setup Sequence that can occur if the instrument fails to stabilize the part.	
Part Not Exhausted	PX	This is an error in the Auto Setup Sequence that can occur if the instrument fails to exhaust the part.	
Sequence Complete	QC	Sequence Complete	
Program Reject	R	Program evaluation was not successful, for multiple tests – if any test fails, the part is rejected.	
Part Reject - Level 1	R1	Not Used	
Part Reject - Level 2	R2	Not Used	
Part Reject - Level	R3	Not Used	
Source Pressure Exceeded	RX	The source pressure set by the factory on the hardware configuration menu was exceeded.	
Stop Button Pressed	SB	The stop button or input was received	

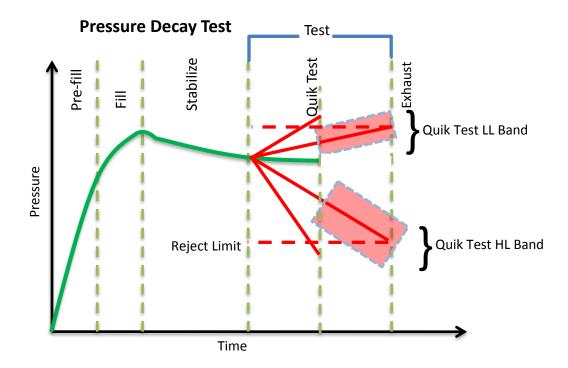
5/23/2017 66 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Start Common Input Low	SC	Not Used	
Pressure Select Config Error	SE	Configuration Error. The instrument was not configured properly.	
Self-Test Failed	SF	The Self-Test failed	Make sure that the test line was removed and the test port was plugged before the test was conducted. One of the internal valves may be leaking.
Error: Stop Input Height	SH	The instrument cannot start a test if the Stop input is high.	
Stop Input Received	SI	Stop Input Received.	
Severe Leak	SL	Severe Leak indicates the test process did not achieve Minimum Pressure before reaching the Prefill set point or failed to maintain Minimum Pressure during fill or Stabilization timers. This results in a Program Reject.	Check pressure regulator setting, cut seals, bad parts, or tooling control pressure by testing with master part
Self-Test Passed	SP	Self-Test process indicates no internal leak	
System Pressure Exceeded	SX	The system pressure of the unit was exceeded.	Check the pressure source and regulators
Tooling Not Reset	TE	Not Used	
Error: Two- Input Req to Start	TI	Not Used	
Test Port Select Config Error	ТР	The instrument configuration is not correct.	
Error: Tooling not Retracted	TR	Not Used	
Tooling Reset	TS	Not Used	
Error: Tooling not Extended	TX	Not Used	
Vent Part Reset Tooling	VR	Not Used	
Transducer Cal Complete	XC	The transducer calibration is complete and was successful.	

5/23/2017 67 www.cincinnati-test.com

Message	Code	Description	Corrective Actions
Transducer Cal Error	XE	There was an error when trying to calibrate the transducer.	Check transducer wiring
Pressure Transducer Fault	XF	Not Used	
External Switch did not go high	ХН	The External Pressure Switch input did not go high before the end of the fill timer. This results in a Malfunction.	Check the pressure switch. Make sure that the path to the pressure switch is not blocked.
External Switch did not go low	XL	The External Pressure Switch input did not go low between tests. This results in a Malfunction.	Check pressure switch to make sure it is functioning.
Transducer Over Range	XO	During the testing process the pressure exceeded the range of the transducer. This results in a Malfunction.	Check the pressure regulator setting
Transducer Verify Complete	XV	The transducer verification sequence is complete.	
Transducer Zero Bad	XZ	The pressure transducer's atmospheric pressure reading at the beginning of the testing cycle is outside of tolerance. This results in a Malfunction.	Perform transducer calibration routine in Self-Test

5/23/2017 68 www.cincinnati-test.com


Appendix B – Quik Test

In this Appendix you will understand the theory and parameters for reducing the test time for obviously good and obviously bad products without sacrificing the accuracy for marginal parts. This capability is referred to as Quik Test in the instrument. This functionality is available in any test type that is capable of conducting a Program Calibration using a leak standard.

How it works

Most manufacturing processes produce the desired quality of product a high majority of the time. These parts easily pass the test being performed on them. Conversely, most defective parts reject by a wide margin. Quik Test monitors the pressure or flow signal during the test and ends the test early for parts that easily pass or easily reject. Any marginal parts that are within the parameters set by the Quik Test HL (High Limit) Band and Quik Test LL (Low Limit) Band will utilize the entire Test time to ensure the accuracy of the result.

At the desired time in the Test sequence determined by the Quik Test Percent parameter the instrument calculates the projected leak rate and compares it with the Quik Test Low Limit and High Limit Bands. If the projected leak rate is within either of these two bands, the test continues to the end of the test timer. If the instrument's projected leak rate is outside of these bands, it will stop the test, output the results according to the Test Evaluation criteria, and display the projected leak rate.

5/23/2017 69 www.cincinnati-test.com

The prior chart shows the master part curve, the Low Limit with its Quik Test LL band limit, and the High Limit with its Quik Test HL band limit. If the pressure loss is within either the Quik Test LL band or Quik Test HL band at the QT% of Test Timer, the test will continue and complete the entire test cycle. If the results are outside the limit bands at the QT% of Test Timer, the test will stop and the test result will reflect the Test Evaluation criteria. Setting narrow bands about the Low Limit and High Limit is a very aggressive approach that will greatly limit the number of tests that run to the end of the test timer. Set wider bands as a more conservative approach to Quik Test.

An initial analysis of Quik Test should be performed before actually implementing this feature by establishing the "QT Test Timer" at 10, 25, 50, 75, or 90% and setting "Quik Test" to OFF. A Program Cal must be performed after setting the "Quik Test Timer" to measure the typical" leak response curve for the test. Test production parts over a reasonable time (up to 1000 parts in various production conditions). The instrument projects a leak rate at the Quik Test Timer and then completes the full test cycle and calculates the leak rate for the complete test. The instrument stores the test results that include both the actual complete test result and a projected test result based on the Quik Test measurement. By comparing the two leak rate results, a percent of error for the Quik Test feature can be calculated. If the results are satisfactory, the Quik Test feature can be implemented by setting appropriate High Limit and Low Limit Bands based on the test comparison and enabling Quik Test. This feature will save the time difference between a full test time and the Quik Test Time for almost all of the accepted parts and most of the rejected parts. If the results are not consistent to each other, test further by increasing the Quik Test Timer, recalibrate the instrument, and compare the results again.

Test Parameters

The Test parameters for the program may be viewed and modified by going to the Program Config menu and selecting the TST:*** Icon.

TST Parameter	Description
Quik Test Enable	Activates Quik Test.
Quik Test Timer	Defines the time as a percent of the Test sequence when the Quik Test function result is calculated.
Quik Test LL Band	The leak (flow) rate band around the Low Limit within which the tests will continue to completion. This value is the amount above and below the nominal. For example, if this value is set to 0.5 scc/m and the Low limit is set to -5.0 scc/m, the entire Quik Test LL Band will be -4.5 to -5.5scc/m.
Quik Test HL Band	The leak (flow) rate band around the High Limit within which the tests will continue to completion. This value is the amount above and below the nominal. For example, if this value is set to 1.0 scc/m and the High limit is set to 10.0 scc/m, the entire Quik Test LL Band will be 9.0 to 11.0 scc/m.

5/23/2017 70 www.cincinnati-test.com

Appendix C – Environmental Drift Correction

In this Appendix you will understand the theory and parameters for implementing the Environmental Drift Correction feature.

How it works

The environmental drift correction routine helps to maintain the calibration of the system by continuously monitoring and calculating a correction factor for changes in the test conditions. This routine dynamically compensates for slow changes in the test environment like room temperature changes, part temperature changes, test air temperature changes, part elasticity changes, part absorption characteristics, etc. These factors influence the dynamics of how the test part reacts to the testing process and the determination of the leak rate. "Environmental Drift Correction" defines how wide of a band around the Master Part Loss or Master Part Flow value will be considered as normal variations in flow rate for a non-leaking part. The "Environmental Drift Correction (+EDC %) is based on High Limit. The instrument continuously calculates a running average of test results that fall within the band (EDC %) about the original non-leaking master part curve. It corrects each future result by the calculated drift determined from previous test results. The drift value is calculated as shown.

Typical settings for "Environmental Drift Correction" are 10, 25, 50, and 90%. The sample size is set as EDC quantity (3 or greater). Flexible parts require a greater "Environmental drift correction" than rigid parts.

The "Environmental Drift Correction" effectively defines how much shift can occur. This limits the routine from continuing to compensate for possible growing leaks in the seal or test pneumatics.

TST Parameter	Description
EDC Enable	Enables Environmental Drift Correction
EDC Percentage	Defines the band about the master part curve where test values are saved to calculate EDC drift. Set as a percentage of the High Limit parameter.
EDC Quantity	Defines the number of test results within the EDC band used to calculate drift.

5/23/2017 71 www.cincinnati-test.com

Environmental Drift Correction (EDC) will reset based on any of the following conditions:

- 1. Instrument power-cycle (due to limitations in instrument non-volatile storage)
- 2. Change of any variables that affect EDC calculations:
 - a. EDC Configuration change (modification the variables: EDC Enabled, EDC Percentage, or EDC Quantity)
 - b. Test Limit change (modification of the variable: *High Limit |Loss/Leak/Rate|*)
- 3. Program idle time-out: 1 hour elapsed since last test on matching program number

Note: The act of changing the selected active program <u>does not</u> reset the Environmental Drift Correction feature. A user can switch between multiple programs (EDC data is stored per program), as long as the amount of time from the last time the similar program number was run does not exceed the 1-hour time-out.

5/23/2017 72 www.cincinnati-test.com

Appendix D - Communication Code Tables

This appendix lists the codes that are referenced in the notes of <u>Chapter13</u>—Communication.

Each table can be generated within the communications interface by providing the associated command denoted.

Data Type Codes or Header Codes

type "TABLE HEADER"

	Data Type Code	Description
1	V	Variable Edit
2	L	List
3	M	Message
4	Q	Result List
5	Т	Streaming Started
6	S	Streaming Value
7	Х	Streaming Stopped
8	R	Result Value

Program Evaluation Codes

type "TABLE RESULT"

JP	Program Evaluation Code	Description
1	Р	TEST PASSED
2	F	TEST FAILED
3	E	TEST ERROR
4	S	TEST SKIPPED
5	Х	TEST FAILED - LEVEL 1
6	Υ	TEST FAILED - LEVEL 2
7	Z	TEST FAILED - LEVEL 3
8	M	AUTO-CAL MASTER PART
9	L	AUTO-CAL LEAK STANDARD PART
10	N	TEST FAILED - NO EVENT
11	С	TEST COMPLETE

5/23/2017 73 www.cincinnati-test.com

Test Evaluation Codes

type "TABLE EVALUATION"

ıуp	type "IABLE EVALUATION"		
	Test Evaluation Code	Description	
1	А	PROGRAM ACCEPT	
2	AC	AUTOSETUP SEQ COMPLETE	
3	AF	PROGRAM CALIBRATION FAILED	
4	AL	MASTER+LEAK PART COMPLETE	
5	AM	MASTER PART COMPLETE	
6	AP	PROGRAM CALIBRATION PASSED	
7	AT	ERROR: ANTI-TIE DOWN	
8	BR	ERROR: BARCODE REQ TO START	
9	C1	MASTER+LEAK LOSS <master loss<="" td=""></master>	
10	C2	MASTER LOSS>MAX M+L LOSS	
11	C3	MASTER+LEAK LOSS>MAX M+L LOSS	
12	C4	MASTER FLOW>MAX M+L FLOW	
13	C5	MASTER FLOW <min flow<="" master="" td=""></min>	
14	C6	MASTER+LEAK FLOW>MAX M+L FLOW	
15	C7	MASTER FLOW>MAX MASTER FLOW	
16	C8	MASTER+LEAK FLOW <master flow<="" td=""></master>	
17	C9	MASTER LOSS <min loss<="" master="" td=""></min>	
18	CA	CAL PROGRAM ACCEPT	
19	CE	CALCULATION ERROR	
20	CF	CAL REQUIRED - LIMIT EXCEEDED	
21	СМ	MIN PERF FACTOR ERROR	
22	СР	CAL REQUIRED - PARAM CHANGED	
23	CR	CAL PROGRAM REJECT	
24	CX	CHAMBER EVACUATION FAULT	
25	DF	DP TRANSDUCER FAULT	
26	DO	DP TRANSDUCER OVER-RANGE	
27	DZ	DP TRANSDUCER ZERO BAD	
28	EC	ELEC REGULATOR CAL COMPLETE	
29	EE	ELEC REGULATOR CAL ERROR	
30	EF	PART EVAC FAULT	

	Test Evaluation Code	Description
31	EI	ERROR: INSTRUMENT NOT ENABLED
32	EP	PROG ERROR
33	ER	SYSTEM ERROR - SERVICE REQ
34	FC	CHAMBER PRESSURE HIGH
35	FO	FLOW TRANSDUCER OVER-RANGE
36	FX	ERROR: EXCESSIVE FLOW
37	FZ	FLOW TRANSDUCER ZERO BAD
38	HF	HELIUM BACKGROUND FAULT
39	IC	INVALID INPUT CONFIGURATION
40	ID	INVALID CALIBRATION DATA
41	IE	INPUT INITIAL STATE ERROR
42	IF	I/O FAULT
43	10	INVALID I/O CONFIGURATION
44	IP	INVALID PROGRAM SELECTED
45	IR	CHAMBER RISE INPUT FAULT
46	IS	ISOLATION FAILURE
47	IX	CHAMBER CROSSOVER INPUT FAULT
48	LO	MASTER LOSS>MAX MASTER LOSS
49	L1	MASTER+LEAK LOSS <min loss<="" m+l="" td=""></min>
50	L2	LEAK LOSS <min lea<="" td=""></min>
51	L3	LEAK LOSS>MAX LEAK LOSS
52	L4	MASTER+LEAK FLOW <min flow<="" m+l="" td=""></min>
53	L5	LEAK FLOW <min flow<="" leak="" td=""></min>
54	L6	LEAK FLOW > MAX LEAK FLOW
55	LD	ERROR: DUPLICATE TARGET LINK
56	LE	LEAK STD SELECT CONFIG ERROR
57	LL	ERROR: LINK EXECUTION LOOP
58	LN	ERROR: NO LINKS DEFINED
59	LO	ERROR: DISSIMILAR LINK ORDER
60	LP	ERROR: LINK PROG IS PARENT

5/23/2017 74 www.cincinnati-test.com

type "TABLE EVALUATION"

	Test Evaluation Code	Description
61	LU	ERROR: LINK PROG UNDEFINED
62	MC	MASS SPEC CONTAMINATION
63	MF	ERROR: PART MARK FAULT
64	MS	MAN FILL SWITCH
65	NE	NO EVENT OCCURRED
66	ОС	ATMOSPHERIC PRESSURE COMPLETE
67	OE	ATMOSPHERIC PRESSURE ERROR
68	PA	ABOVE TARGET PRESSURE
69	РВ	BELOW TARGET PRESSURE
70	PC	ERROR: PART NOT CHANGED
71	PE	PROGRAM CONFIGURATION ERROR
72	PF	PART NOT FULL
73	PH	TEST PRESSURE HIGH
74	PL	TEST PRESSURE LOW
75	PP	ERROR: PART NOT PRESENT
76	PR	POWER RESET
77	PS	PART NOT STABILIZED
78	PV	PROCESS FAULT
79	PX	PART NOT EXHAUSTED
80	QC	SEQUENCE COMPLETE
81	R	PROGRAM REJECT
82	R1	PART REJECT - LEVEL 1
83	R2	PART REJECT - LEVEL 2
84	R3	PART REJECT - LEVEL 3
85	RF	CHAMBER RISE FAULT
86	RH	PRE-PRESSURE HIGH
87	RL	PRE-PRESSURE LOW
88	RX	SOURCE PRESSURE EXCEEDED
89	S1	LD ZERO < MIN
90	S2	LD ZERO > MAX

	Test Evaluation Code	Description
91	S3	LD LEAK < MIN
92	S4	LD LEAK > MAX
93	SB	STOP BUTTON PRESSED
94	SC	START COMMON INPUT LOW
95	SE	PRESSURE SELECT CONFIG ERROR
96	SF	SELF-TEST FAILED
97	SH	ERROR: STOP INPUT HIGH
98	SI	STOP INPUT RECEIVED
99	SL	SEVERE LEAK
100	SM	SNIFFER MODE MISMATCH
101	SN	ERROR: SNIFFER NOT READY
102	SP	SELF-TEST PASSED
103	SR	SNIFFER READY INPUT FAULT
104	ST	SNIFFER TYPE MISMATCH
105	SU	SNIFFER UNITS MISMATCH
106	SX	SYSTEM PRESSURE EXCEEDED
107	ТВ	T-GAS BACKGROUND FAULT
108	TC	T-GAS CHAMBER CLEANUP FAULT
109	TE	ERROR: TOOLING NOT RESET
110	TF	T-GAS PART FILL FAULT
111	TI	ERROR: TWO-INPUT REQ TO START
112	TL	T-GAS LEAK STD FAULT
113	TM	T-GAS MIN LEAK RATE FAULT
114	TP	TEST PORT SELECT CONFIG ERROR
115	TR	ERROR: TOOLING NOT RETRACTED
116	TS	TOOLING RESET
117	TX	ERROR: TOOLING NOT EXTENDED
118	VF	VALVE LOAD FAULT
119	VR	VENT PART RESET TOOLING
120	WA	WEIGHT ABOVE MAX

5/23/2017 75 www.cincinnati-test.com

Segment Codes

type "TABLE SEGMENT"

type "TABLE SEGMENT"		
	Segment Code	Description
1	%VR	Percent of Reference Volume Test
2	APC	Setup - Atmospheric Pressure Check
3	AR	Autorun Relax
4	BAL	Stabilize DP Xdcr Balance
5	СВС	Chamber - blower control
6	CC0	Chamber - circulation off
7	CC1	Chamber - circulation on
8	CCX	Chamber - accumulation rest
9	CE0	Chamber - evacuate off
10	CE1	Chamber - evacuate on
11	СНА	Exhaust - Chamber Output Rest
12	CIF	Chamber - inlet blower off
13	CIO	Chamber - inlet blower on
14	CLN	Stabilize Chamber Cleanup
15	CO0	Chamber - outlet blower off
16	CO1	Chamber - outlet blower on
17	CP0	Chamber - pre-purge
18	СРС	Chamber - clamshell purge rings control
19	CPG	Chamber - Exh/Purge
20	СРО	Chamber - clamshell purge rings option
21	CPR	Chamber - clamshell purge rings rest
22	CST	Fill Clean
23	CV0	Chamber - vent off
24	DLY	Delay
25	DPD	Differential Pressure Decay Test
26	DPL	Differential Pressure Decay - Leak Standard Test
27	DPS	Setup - DP Transducer Setpoint
28	DPT	Rate of Pressure Loss Test
29	DTV	Setup - DP Transducer Verification
30	DTZ	Setup - DP Transducer Zero

	Segment Code	Description	
31	ERA	Setup - Electronic Regulator Analyze	
32	ERS	Setup - Electronic Regulator Setpoint	
33	ERZ	Setup - Electronic Regulator Zero	
34	ESI	Internal - Empty-Seq	
35	EST	Fill Evac	
36	EXE	Exhaust until Empty	
37	EXH	Exhaust	
38	EXP	Exhaust until Pressure	
39	EXT	Tooling Motion Extend	
40	FFL	Fill until Full	
41	FGN	General Fill	
42	FLC	Mass Flow - Leak Rate Test	
43	FLL	Fill (without pressure monitoring)	
44	FLR	Precice Mass Flow Test (Differential Flow)	
45	FLW	Mass Flow Test	
46	FRF	Fill Reference	
47	FRP	Fill Ramp	
48	FST	Fill Tracer	
49	FTS	Setup - Flow Transducer Setpoint	
50	FTV	Setup - Flow Transducer Verification	
51	FTZ	Setup - Flow Transducer Zero	
52	HVC	Chamber - hardvac control	
53	LKC	Link Control	
54	LNK	Link Decision	
55	MVX	Setup - Mix Verification	
56	осс	Occlustion Test (Backpressure)	
57	PLO	Pressure Loss Test	
58	PLR	Pressure Decay - Leak Standard Test	
59	PMK	Tooling Part Mark	
60	PRF	Prefill/Fill	

5/23/2017 76 www.cincinnati-test.com

type "TABLE SEGMENT"

type	Segment	77.2.2.1 4 2
	Code	Description
61	PRF	Prefill until Pressure
62	PRF	Proof Test
63	PRI	Internal - Pre-Seq
64	PRI	Internal - Evaluate Part Result
65	PRP	Prefill Pre-Pressure
66	PRS	Step Proof
67	PSI	Internal - Post-Seq
68	PTS	Setup - Pressure Transducer Setpoint
69	PTV	Setup - Pressure Transducer Verification
70	PTZ	Setup - Pressure Transducer Zero
71	PVF	Pressure Verify
72	RCF	Refrigerant Iso Off
73	RCX	Refrigerant CS Isolation
74	REC	Exhaust - T-Gas
75	REF	Refrigerant Fill
76	RET	Tooling Motion Retract
77	REV	Exhaust - Re-Evacuate
78	RFE	Refrigerant Evac
79	RFM	Refrigerant Manual Fill
80	RFS	Stabilize Scale
81	RFT	Refrigerant Fill
82	RFX	Refrigerant Stabilize
83	RL	Calibration Relax
84	RPS	Refrigerant Part Switch
85	RTE	Ramp to Pressure Event Test
86	RTF	Ramp to Flow Event Test
87	RTI	Ramp to Digital Input Event Test
88	RVN	Refrigerant Vent
89	SCI	Setup - Scale Init
90	SD1	Setup - Sniffer idle

	Segment Code	Description
91	SDP	Stabilize for DP
92	SFS	Stabilize Tracer
93	SGL	Fill Tracer Gross
94	SGS	Stabilize Tracer Gross
95	SI1	Setup - Sniffer Init
96	SI2	Setup - Sniffer Init 2
97	SLE	Tooling Seal Extend
98	SLR	Tooling Seal Retract
99	SME	Setup - Manifold Exhaust
100	SMF	Setup - Manifold Fill
101	SMI	Setup - Manifold Isolate
102	SNF	Sniffer Test
103	SNG	Sniffer Gross Test
104	SNW	Stabilize Tracer Wait
105	SPF	Fill Step
106	SPL	Setup - Pressure Select
107	SPR	Setup - Pre-Seq
108	SPS	Setup - Post-Seq
109	SSD	Stabilize Step Dwell
110	SSR	Setup - Set Regulator
111	STE	Stabilize Evac
112	STF	Stabilize for Flow
113	STG	General Stabilize
114	STR	Setup - Transducer Residual
115	STR	Stabilize Reference Volume
116	STS	Stabilize until Slope
117	SVD	Evac Test
118	SXT	Stabilize for Xdcr Test
119	TMC	Tooling Motion Control
120	XDR	Transducer Test

5/23/2017 77 www.cincinnati-test.com

Test Data Identifier Codes

type "TABLE VARIABLE"

type "TABLE VARIABLE"		
	Test Data Identifier Code	Description
1	%P	Percent Precision
2	2in	Two Inputs to Start
3	AAA	Accum Autozero
4	AAV	Accept Average
5	ACT	Auto-Cyle Test Mode
6	AD	Analog A/D
7	AER	Permit Early Reject
8	ALR	Alt Leak Rate
9	APC	Accept Percentage
10	APC	Atm Pressure Check
11	APP	Accept Program
12	AQ	Average Quantity
13	ARC	Autorun Cycle Count
14	ARE	Autorun Enable
15	ARM	Autorun Method
16	ARR	Autorun Relax
17	ASA	Short Autozero
18	ASD	Accept Std Dev
19	ASM	AutoSetup Method
20	ASP	Accept SPC Std Dev
21	ATD	Anti-Tie-Down
22	AZD	Autozero Delay
23	AZE	Autozero Enable
24	Ain	Analog Input
25	Aot	Analog Output
26	BC	Batch Calibration
27	BCM	Barcode Method
28	BL	Batch Layout
29	BQ	Batch Quantity
30	BR	Barcode Required
31	CA	Accept Cycles
32	CAP	Calibrate Percent
33	CC	Capability Code
34	CCD	Ch Evac Valve Dly
35	ССР	Clear Prog Counters
36	CCR	Clear Chan Results
37	CCS	Clear Chan Counters
38	CEF	Chmbr Evac Limit
39	CEV	Chmbr Evac Close
40	CFS	Cleanup Setpoint
41	CGP	Chmbr Pre-Purge
42	CGT	Chmbr Pre-Purge
43	СНМ	Post-Purge Method
44	СНО	Chmbr Post-Purge
45	СНР	Chamber Pressure
		<u> </u>

	Test Data	
	Identifier	
	Code	Description
46	CHV	Chamber Volume
47	CID	CS Iso Delay
48	CLF	Corr. Leak Std Flow
49	CLM	Clamshell
50	CLP	Check Limit Percent
51	CLR	Cal Required
52	CLR	Cumulative Leak
53	CM	Malfunction Cycles
54	CM	Cal Method
55	CMN	Clean Min Pressure
56	CMX	Maximum Pressure
57	COF	Continue on Fail
58	COL	Cutoff Limit
59	СР	Current Precision
60	CPP	Copy Program
61	CPS	TLR Change/Sec
62	CPT	Consecutive Points
63	CPT	Consecutive Points
64	CR	Reject Cycles
65	CRA	Clean Part Source
66	CRF	Pre-Purge
67	CRS	Chmbr Crossover
68	CSC	Cycles Since Cal
69	CSN	Clear Since New Ctr
70	CSN	Cycles Since New
71	CST	Custom Self Test
72	СТ	Total Cycles
73	CTE	Continue to Evac
74	CTF	Continue to Fill
75	CTG	Target Pressure
76	CTP	Copy to Target Prog
77	CTR	Clean Part Timer
78	CTX	Continue T-Gas Exh
79	DA	Analog D/A
80	DD	Decay Direction
81	DFL	Direct Flow
82	DKL	DP Leak Loss
83	DL	Diff Press Loss
84	DLL	DP Master+Leak Loss
85	DLR	Diff Press Loss Rd
86	DLT	Delay Timer
87	DML	DP Master Part Loss
88	DMR	DP Mstr Part Lss Rd
89	DP	Diff Pressure
90	DPI	DP iso Percent

5/23/2017 78 www.cincinnati-test.com

type "TABLE VARIABLE"

	Test Data Identifier Code	Description
91	DPP	¤ Press Precision
92	DVF	Vent During Fill
93	DVM	Test Mode
94	DVO	Device Mode
95	Dt	Date
96	ECL	ERC Crossover Limit
97	EDC	EDC Offset
98	EDE	EDC Enabled
99	EDP	Event ¤P
100	EDP	EDC Percentage
101	EDQ	EDC Quantity
102	EDT	Event ¤T
103	EIL	ERC Increment Limit
104	EMP	Ext Xdcr Pressure
105	ENB	E-NOB
106	ENC	Enable Calibration
107	ENT	Enable Tooling I/O
108	EOL	ERC Offset Limit
109	EPP	Pressure Precision
110	EPR	Pressure Reference
111	ERA	Atm Pressure
112	ERC	ERC Method
113	ERE	ERC Enabled
114	ERP	ERC Rate/Period
115	ERQ	ERC Quantity
116	ERR	E-Regulator Rest
117	ERV	Re-Evac After Test
118	ESC	Ext Switch Low Chk
119	ESN	External Sniffer
120	ESP	Exhaust Setpoint
121	ET	Elapsed Time
122	ETP	Fine T-Gas Target
123	ETP	Evacuation Setpoint
124	ETW	ERC Target Window
125	ETW	ERC Target Window
126	ETY	Edge Type
127	EUP	Pressure Unit
128	EVA	Evacuation Source
129	EVC	Eval Condition
130	EVD	Vacuum Decay
131	EVL	Test Evaluation
132	EVM	Allow Evac Limit
133	EVP	Event Pressure
134	EVT	Event Type
135	EXD	Evacuation Xdcr

	Test Data Identifier Code	Description
136	EXP	Execution Pause
137	FCC	Force Cal Cycles
138	FCD	FCal Date Limit
139	FCL	FCal Cyc Limit
140	FCM	Force Cal Mode
141	FCT	FCal Time Limit
142	FCT	Force Cal Time
143	FEL	Flow Event Limit
144	FL	Flow
145	FLD	Fine T-Gas Decay
146	FLF	Fine T-Gas Fill
147	FMV	Finish Mix Verify
148	FNB	FF-NOB
149	FP	Flow Precision
150	FPR	Fill Pressure
151	FPS	Fine Sample
152	FSW	Final Src Weight
153	FTA	Fill
154	FTA	Dwell
155	FTX	Test Failed Text
156	Fdb	Tooling Feedback
157	GLD	Gross T-Gas Decay
158	GLF	Gross T-Gas Fill
159	GLN	Gross T-Gas Min
160	GLT	Gross T-Gas Target
161	GLX	Gross T-Gas Max
162	GPS	Gross Sample
163	GPT	Gross Fill Pulse
164	HLE	High Limit Event
165	HLF	High Limit Flow
166	HLL	High Limit Loss
167	HLP	High Limit Pressure
168	HLQ	High Limit Leak
169	HLR	High Limit Rate
170	HLV	High Limit %Vref
171	I/O	I/O ID
172	IET	Event Type
173	IF	Instrument Flow
174	IIS	Input Initial State
175	ILS	Level State
176	ILT	Level Time
177	IPR	Close Inner Purge
178	IS	Input State
179	LAV	Leak Alarm Volume
180	LCD	Leak Std/Cal Define

5/23/2017 79 www.cincinnati-test.com

type "TABLE VARIABLE"

туре	Test Data Identifier Code	Description
181	LCD	Leak Std Cal Date
182	LCF	Correction Factor
183	LDP	Leak Det Precision
184	LDT	Dev Zero Delay
185	LDU	Leak Det Unit
186	LDZ	Device Zero
187	LF	Master+Leak Flow
188	LFC	Leak Std Cal Flow
189	LFR	Master+Leak Flow Rd
190	LIN	Linearity
191	LKF	Leak Flow
192	LKL	Leak Loss
193	LKM	Link Motion
194	LL	Master+Leak Loss
195	LLE	Low Limit Event
196	LLF	Low Limit Flow
197	LLL	Low Limit Loss
198	LLP	Low Limit Pressure
199	LLQ	Low Limit Leak
200	LLR	Master+Leak Loss Rd
201	LLR	Low Limit Rate
202	LLV	Low Limit %Vref
203	LMP	Link Motion Preempt
204	LNL	Linearity Limit
205	LOF	Loss Offset
206	LQ	Master+Leak QL
207	LQD	DP Mstr+Lk QL Rd
208	LQD	DP Master+Leak QL
209	LQF	Master+Leak QF Rd
210	LQF	Master+Leak QF
211	LQR	Master+Leak QL Rd
212	LR	Leak Rate
213	LRC	Leak Std Recert
214	LSC	Leak Std Chk
215	LSP	Leak Std Pressure
216	LSS	Leak Std Select
217	LSV	Leak Std Value
218	LV	Launch Validation
219	ME	Malfunction Eval
220	MF	Master Part Flow
221	MFO	Manual Fill
222	MFR	Master Part Flow Rd
223	MFT	Manual Fill
224	ML	Master Part Loss
225	MLF	Min Mstr+Leak Flow

	Test Data Identifier Code	Description
226	MLF	Min Leak Flow
227	MLL	Min Leak Loss
228	MLR	Master Part Loss Rd
229	MMF	Min Master Flow
230	MMF	Min Master Flow
231	MML	Max Master Loss
232	MML	Min Mstr+Leak Loss
233	MML	Min Master Loss
234	MNT	Min Tare Weight
235	МО	Master Flow Offset
236	MOR	Master Flow Offset
237	MPC	Malfunction Percent
238	MPF	Min Perform Factor
239	MPP	Max System Pressure
240	MQ	Master Part QL
241	MQD	DP Mstr Part QL Rd
242	MQD	DP Master Part QL
243	MQF	Master Part QF Rd
244	MQF	Master Part QF
245	MQR	Master Part QL Rd
246	MSL	Reject Rate
247	MSO	MS Iso Open Delay
248	MSP	Max Pressure - Opt
249	MSR	Mark Severe Lk Rej
250	MST	Mass Spec Purge
251	MTM	Min T-Gas Mode
252	MTS	T-Gas Source
253	MV	T-Gas Mix Verify
254	MVF	T-Gas Tgt Press
255	MVH	Leakrate High Limit
256	MVL	Leakrate Low Limit
257	MVM	T-Gas Leak Rate
258	MVS	Start Mix Verify
259	MVT	T-Gas Fill Timer
260	MXT	Max Tare Weight
261	Mot	Motion Number
262	Mot	Number of Motions
263	NAM	Program Name
264	NBC	Number of Barcodes
265	NLK	Number of Links
266	NOP	Number of Options
267	NPP	Next Program
268	NPS	Number of Steps
269	NTP	Sample Points
270	NUM	Number of Programs

5/23/2017 80 www.cincinnati-test.com

type "TABLE VARIABLE"

	Test Data Identifier Code	Description
271	OLS	Open Leak Std
272	OPT	Option
273	OTL	Open T-Gas Leak Std
274	P	Master Gauge Press
275	P	Instrument Pressure
276	P	Meas Pressure
277	P%V	Part %Vref
278	PC	Pneumatic Code
279	PCL	Leak Std Cal Press
280	PCR	Pressure Correction
281	PCT	Chmbr Post-Purge
282	PDL	Press Delta Limit
283	PET	Part Evac Limit
284	PEV	Part Evacuation
285	PEX	Partial Exhaust
286	PF	Performance Factor
287	PFL	Part Flow
288	PFM	Prefill Method
289	PG	Target Pressure
290	PKP	Peak Pressure
291	PL	Pressure Loss
292	PLP	Predicted Loss
293	PLQ	Master+Leak Q-Press
294	PLR	Pressure Loss Rd
295	PLR	DP Mstr+Lk Loss Rd
296	PM	Master Part Press
297	PM	Part Mark
298	PMF	Part Mark Feedback
299	PML	Master+Leak Press
300	PMN	Minimum Pressure
301	PMQ	Master Part Q-Press
302	PMX	Maximum Pressure
303	PNM	Sniffer Test Point
304	PP	Pressure Precision
305	PP	Proof Pressure
306	PPC	Part Present Check
307	PPE	Pre-Press Enable
308	PPR	Pre-Pressure
309	PPS	Pre-Press Select
310	PPW	Pre-Pressure Window
311	PQ	Predicted Leak
312	PRF	Prefill
313	PRI	Programmable Input
314	PRO	Programmable Output
315	PRR	Pressure Restrict

	Test Data Identifier Code	Description
316	PSL	Pressure Select
317	PSL	Pressure Select
318	PSL	Pressure Select
319	PSP	Setpoint Pressure
320	PST	Self Test Pressure
321	PSV	Part Sniffer Type
322	PT	Target Pressure
323	PTF	Prefill
324	PTG	Gross Prefill
325	PTP	¤P/¤T Precision
326	PTS	Port Select
327	PTS	Part Seal
328	PTU	¤P/¤T Unit
329	PTX	Test Passed Text
330	PW	Weight Precision
331	Рр	Part Pressure
332	Pr	Ref Pressure
333	Pt	Test Pressure
334	Pt	Target Pressure
335	Pt	Apply to Program #
336	Pt	Program Number
337	Pv	Estimated Part Size
338	QF	Quik Flow
339	QHL	Quik Test HL Band
340	QL	Quik Loss
341	QLL	Quik Test LL Band
342	QP	Quik Test Pressure
343	QPT	Quantity Points
344	QTE	Quik Test Enable
345	RAN	Number of Points
346	RAP	Analysis Pressure
347	RAS	Analysis Voltage
348	RAT	Analysis Percent
349	RAV	Reject Average
350	RC	Elec Regulator Cal
351	RC1	EReg Zero DA Cal
352	RC2	EReg Span DA Cal
353	RC3	EReg Zero Base Cal
354	RC4	EReg Span Base Cal
355	RCA	Analog Value
356	RCD	Last Cal Date
357	RCI	Instrument Pressure
358	RCP	Retention Cutoff
359	RCS	Setpoint Voltage
360	RCT	Last Cal Time

5/23/2017 81 www.cincinnati-test.com

type "TABLE VARIABLE"

type	Test Data Identifier Code	Description
361	RCV	Master Value
362	RDI	Restore Default I/O
363	RDT	Reg Dwell Timer
364	RED	Refrgnt Vent Close
365	REG	Regulator
366	REO	Refrigerant Vent
367	REX	Refrigerant Vent
368	RFC	Fill Close Delay
369	RFL	Reference Loss
370	RL	Loss Rate
371	RLC	Run Leak Calibrate
372	RLR	Loss Rate Rd
373	RLV	T-Gas LeakStd Value
374	RMX	EReg Span DA Cal
375	RNP	Number of Points
376	ROS	Reject on Slope
377	RPC	Reject Percentage
378	RPM	Ramp Method
379	RPP	Retain Part Press
380	RPP	Reject Program
381	RR	Ramp Rate
382	RR	Retract on Reject
383	RRT	Reject Rate Total
384	RSI	Result Information
385	RSP	Slope Window
386	RSR	Slope Change/Sec
387	RST	Stabilize
388	RVH	High Limit Voltage
389	RVH	High Limit Voltage
390	RVL	Low Limit Voltage
391	RVL	Low Limit Voltage
392	RVP	Retain Volume Press
393	RXM	Pre-Evac Exhaust
394	SAM	Sample Size
395	SAS	Start AutoSetup
396	SCF	Cal Coefficient
397	SCL	T-Gas LeakStd Value
398	SCO	Cal Offset
399	SCP	Start Clean Part
400	SCR	Reject Rate Percent
401	SCT	Scale Type
402	SEV	Leak Rate Window
403	SF	Standard Flow
404	SGN	Sample Gas Number
405	SIO	Sniffer Init

	Test Data Identifier Code	Description
406	SMP	Sample Time
407	SN	Step Number
408	SNR	SNR
409	SOD	Shut Off Delay
410	SP	Starting Pressure
411	SP	Standard Pressure
412	SPM	Fine Wait
413	SPT	Gross Wait
414	SR	Set Regulator
415	SRC	Start Calibration
416	SRH	LD Leak Val Max
417	SRL	LD Leak Val Min
418	SSW	Starting Src Weight
419	STL	Self Test Level
420	STM	Self Test Method
421	STN	Self Test Program
422	STP	Target Press
423	STS	Self Test Source
424	STS	Start Self Test
425	STT	Self Test Limit
426	STV	Step Target Press
427	STW	Target Window
428	SXC	Start Calibration
429	SXT	Start Xdcr Test
430	SXV	Start Verification
431	SZH	LD Zero Val Max
432	SZL	LD Zero Val Min
433	Ser	Serial Number
434	Stn	Channel Number
435	Т	Timer
436	T	Timer
437	TBF	LD Background Limit
438	TEP	T-Gas Exh Press
439	TI	Iso Delay Timer
440	TL	Tooling Option
441	TLK	Test Leak Rate
442	TLP	Leak Rate Precision
443	TLR	T-Gas Leak Rate
444	TLU	Leak Rate Unit
445	TML	LD Min T-Gas Setpt
446	TMN	Fine T-Gas Min
447	TMP	Temp Precision
448	TMX	Fine T-Gas Max
449	TP	Time Precision
450	TPP	Target Program

5/23/2017 82 www.cincinnati-test.com

type "TABLE VARIABLE"

Spe	Test Data	
	Identifier	
	Code	Description
451	TPW	Target Press Window
452	TQ	Quik Test Timer
453	TR1	Trigger 1
454	TRA	T-Gas Source
455	TRM	T-Gas Recovery
456	TSM	T-Gas Sampling
457	TT	Test Sel Timer
458	TT	Test Execution Time
459	TTF	TracerMate Flags
460	TTY	Test Type
461	TTY	Test Type
462	TV	Valve Delay Timer
463	TW	Target Weight
464	TWN	Min Fill Weight
465	TWX	Max Fill Weight
466	Тсу	Desired Cycle Time
467	Tm	Time
468	Tm	Timer Mode
469	UC	Current Unit
470	UDP	¤ Pressure Unit
471	UF	Flow Unit
472	UP	Pressure Unit
473	UP	Percent Unit
474	UPD	Unit/Prec Define
475	UT	Time Unit
476	UTM	Temperature Unit
477	UV	Voltage Unit
478	UV	Volume Unit
479	UW	Weight Unit
480	V	V
481	VAN	Valve A Num - Opt
482	VAP	Valve A PWM - Opt
483	VAT	Valve A Type - Opt
484	VBN	Valve B Num - Opt
485	VBP	Valve B PWM - Opt
486	VBT	Valve B Type - Opt
487	VC	Valve Code
488	VCN	Valve C Num - Opt
489	VCP	Valve C PWM - Opt
490	VCT	Valve C Type - Opt
491	VDN	Valve D Num - Opt
492	VDP	Valve D PWM - Opt
493	VDT	Valve D Type - Opt
494	VFL	Virtual Flow
495	VHT	Vent/Halt Tooling

	Test Data Identifier Code	Description
496	VLP	Volume Precision
497	VLV	Valve Number
498	VNP	Number of Points
499	VP	Voltage Precision
500	VPS	Setpoint Pressure
501	VPW	Valve PWM
502	VSP	Setpoint Voltage
503	VWO	Residual Offset
504	WGT	Refrigerant Weight
505	WHL	High Limit
506	WIN	Stat History Length
507	WLL	Low Limit
508	XAN	Xdcr Zero LL
509	XAX	Xdcr Base Max
510	XBH	Xdcr Zero Hwin
511	XBL	Xdcr Zero Lwin
512	XC	Transducer Cal
513	XC1	Xdcr Zero AD Cal
514	XC2	Xdcr Span AD Cal
515	XC3	Xdcr Zero Base Cal
516	XC4	Xdcr Span Base Cal
517	XCA	Analog Value
518	XCB	Atm Pressure
519	XCD	Last Cal Date
520	XCF	Instrument Flow
521	XCI	Instrument Pressure
522	XCL	Xdcr Curr Limit
523	XCM	Master Reading
524	XCP	Cal Pressure
525	XCS	Setpoint Pressure
526	XCT	Last Cal Time
527	XCV	Master Value
528	XCX	Xdcr Cal X Array
529	XCY	Xdcr Cal Y Array
530	XFC	Xdcr Filter Code
531	XFP	Flow Precision
532	XID	Xdcr Iso Delay
533	XIS	Xdcr Span Inter Cal
534	XIZ	Xdcr Zero Inter Cal
535	XLF	Max Mstr+Leak Flow
536	XLF	Max Leak Flow
537	XLL	Max Leak Loss
538	XMF	Max Master Flow
539	XML	Max Mstr+Leak Loss
540	XMN	Xdcr Base Min

5/23/2017 83 www.cincinnati-test.com

type "TABLE VARIABLE"

type "TABLE VARIABLE"						
	Test Data Identifier Code	Description				
541	XMX	Xdcr Base Max				
542	XNP	Number of Points				
543	XOP	Crossover Pressure				
544	XPC	Pressure Correction				
545	XPM	Pressure Mode				
546	XPP	Pressure Precision				
547	XPR	Pressure Reference				
548	XRL	Xdcr Risidual Limit				
549	XRW	Xdcr Risidual Warn				
550	XSP	Setpoint Pressure				
551	XT	Transducer				
552	XT	Xdcr Tare				
553	XTG	Xdcr Tare Range				
554	XTR	Xdcr Typ Residual				
555	XUF	Flow Unit				
556	XUP	Pressure Unit				
557	XV	Transducer Verify				
558	XVD	Verify Date				
559	XVF	Instrument Flow				
560	XVI	Instrument Pressure				
561	XVM	Master Reading				
562	XVS	Setpoint Pressure				
563	XVT	Verify Time				
564	XVV	Master Value				
565	XZC	Xdcr Zero Check				
566	XZH	Xdcr Zero HL				
567	XZL	Xdcr Zero LL				
568	XZW	Xdcr Zero Window				

5/23/2017 84 www.cincinnati-test.com

Appendix E - Setup & Instrument Configuration Sheets

In this Appendix you will find an aid in documenting the various setup configurations for your C20 Instrument. The following page will hold up to 4 setups.

Instrument and Part Parameter Setup Menu

<u>Instrument Configuration</u>	Factory setting	<u>Changes</u>
Orifice {Orificio} (value on calibration certificate)	_(per calibration)_	
Display format (Formate de Pantalla)	Flow	
Cal Method {Metodo de Calibracion}	Auto	
Test Evaluation (Evaluacion de Pruebas)	Acc/Rej	
Trans Range (Rango del Transductor))	_(set per order)	
Range Adj (Ajus do Rango)	0.0	
Serial Port {Porto serial}	Off	
Program Input {Programa de Dentro}	Calibrate	
Program Output {Program de Fuera}	Exhaust	
Password (Clave de Acceso) (1 - 99)	0.0	
Enable Security? {Opcion de Seguridad?}	N	
Language {Eli dionna} (Eng or Spn)	Eng	
Part Parameters	Factory setting	Changes
Prefill time {Tiempo de Pre-llenado} - max. time to		
each 90% of test pressure before starting fill timer	2.0	
Fill time {Tiempo de llenado} - additional time		
to fill part with regulated air	2.0	
Stabilization time {Tiempo de estabilizacion}-		
Time for pressure to stabilize in part before		
measuring pressure loss	3.0	
Test time {Tiempo de Prueba}- time when		
pressure loss is precisely measured.	4.0	
Exhaust time {Tiempo de escape}- time delay after		
test to vent part before releasing optional seal output	1.0	
Relax time {Tiempo de Descanso}- time between		
tests during automatic calibration sequence	20.0	
Test pressure {Presion de Prueba}- specified		
pressure for leak test	(based on range)	
Reject Rate {Rango de Rechazo}- Specified leak		
value to reject parts	5.0	
Max Neg Leak {Neg Fugo Max} - negative leak value		
below which will reject tests due to process variations	0.1	
Min Cal Ratio (Cal Relac Min) - lower limit of acceptable	0.5	
calibration	0.5	
No Leak Loss {Rango de No-Fuga}- pressure loss		
measured for master good part during calibration cycle.	(based on instrument)	
Reject Loss {Fuga de rechazo} - pressure loss	<i>(</i> 1	
calculated for reject leak rate.	(based on instrument)	
Quik Testing (Pruebe rapido)- %band for Quik test	Off	
Quik Test Time (Tiempo rapido) - time into test to check	0.0	
Process Drift Correction (Correction de tendencia del Proces	so}-	
percentage variation allowed around "No Leak Loss"	0.00	
for zero shift due to process drift. (Off, 10,25,50,90%)	Off	

5/23/2017 85 www.cincinnati-test.com

Instrument Configuration Table

instrument con								
Part Name								
Part Parameters								
Prefill time								
Fill time								
Stabilization time								
Test time								
Exhaust time								
Relax time								
Test Pressure								
Reject rate								
Max Neg Leak								
Min Cal Ratio								
No leak loss								
Reject loss								
Quik Testing								
Quik Test Time								
Process drift correction								
Instrument Paramete	ers							
Orifice value								
Display format								
Calibration method								
Test evaluation								
Transducer range								
Range Adj. (%)								
Serial port								
Programmable output								
Programmable input								
Password								
Language								

5/23/2017 86 www.cincinnati-test.com

Appendix F – Instrument Attachment and Clearance

NOTES:

- 1) THIS DRAWING IS NOT TO SCALE.
- 2) ALL MEASUREMENTS ON THIS PAGE ARE IN INCHS.
- 3) ALL INSTRUMENTS ARE SHIPPED WITH (4) .25-28X 3.5 INCH LONG SHCS.
- 4) RECOMMENDED 4 INCH CLEARANCE UNDER INSTRUMENT FOR TEST PORT, PNEUMATIC CONNECTIONS, AND HAND CLEARANCE.

5/23/2017 87 www.cincinnati-test.com

This page is intentionally blank.

5/23/2017 88 www.cincinnati-test.com

SENTINEL C20WE INDEX

Index

Calibration Parameters, 35 Pressure Decay-ΔP, 14, 19 Channel Configuration, 15, 16, 57 Pressure Decay-ΔP/ΔT. 14. 23 Common, 41 Pressure Regulator, 20, 24, 28, 69, 70 Communication, 10, 44, 45, 47, 57 Preventive maintenance, 7 Communication Code Tables, 75 Program Cal, 11, 28, 30, 32, 33, 34, 35, 38, 39, Counters Screen, 61 52, 63, 64, 65, 66, 67, 72 Data Type Codes, 75 Program Calibration, 32, 33, 65, 71 Program Configuration, 10, 13, 14, 15, 16, 17, 32, Digital I/O Cable Diagram, 41 EDC, 21, 25, 31, 73, 74 39, 48, 50, 63, 65, 66, 68, 72 Electromagnetic Energy Devices, 5 Program Evaluation Codes, 75 Enter Button, 10, 13 Program Select Buttons, 10 Environmental Drift Correction, 21, 25, 31, 73, 74 Quik Test, 30, 31, 71, 72, 88, 89 Ethernet Port. 9 Relax. 28, 32, 88, 89 Example, 47, 61 Reports, 48, 57 Exhaust, 7, 8, 20, 24, 28 RS232, 7, 10, 11, 44, 46, 47, 48 Features, 52 Security, 11, 17, 50 Fill the Test Part, 19, 23, 27 Segment Codes, 78, 79 Filters. 7 Self-Test, 5, 8, 11, 15, 17, 53, 64, 69, 70 Header Codes, 75 Self-Test Passed, 69 I/O Wiring, 37 Setup, 11, 13, 17 Severe Leak, 20, 24, 29, 69 Inlet Air, 7 Inputs, 37, 39, 41 Stabilization Time, 19, 23, 27, 69 Inputs and Outputs, 37 Stabilize, 19, 20, 23, 24, 27, 28, 29, 33, 65, 68, Instrument Calibration, 57 71.88 Instrument Configuration Sheets, 88 Streaming, 45, 47 Target Pressure, 20, 24, 28, 29, 35, 54, 65, 67 Instrument Configuration Table, 89 Target Test Pressure, 19, 23, 27 Introduction, 5 Leak Standard, 14, 16, 27, 30, 32, 33, 35, 52, 55, Technical Specifications Summary, 93 Test, 19, 20, 23, 24, 28, 29 63, 64, 65, 71 Main Menu. 11 Test Data Identifier Codes, 80, 81, 82, 83, 84, 85 Manifold, 55 Test Evaluation, 46, 71, 72 Master Part, 14, 27, 32, 33, 35, 55, 63, 64, 65, 67, Test Evaluation Codes, 76, 77 69, 72, 73 Test Parameters, 17, 72 Master Part Loss, 30, 32, 33, 35, 64, 73 Test Results, 21, 25, 30, 44, 48, 72, 73 Master+Leak Loss, 30, 32, 33, 35, 63 Test Time, 14, 21, 27, 63, 65, 71, 72, 88, 89 Messages & Error Codes, 63 Test Type, 11, 13, 14, 17, 27, 46, 63, 71 Monitor Screens, 11 Test Type Menu, 14 Non-Leaking Master Part, 14, 27, 33, 55 Transducer, 15, 48, 57, 69, 70 Open Leak Std, 52 Transducer, 70 Transducer Calibrate, 48, 57, 69, 70 Orifice, 55 Outputs, 37, 40, 41 Transducer Calibration Report, 57 Parsing Data, 47 Transducer Verification Report, 57 Performance Factor, 30, 33, 35, 65 Transducer Verify, 48, 57, 70 Prefill, 24, 29, 47, 69 Units of Measure, 15 USB Port, 9 Pressure Decay-Leak Std, 14, 27, 35, 46

5/23/2017 www.cincinnati-test.com

SENTINEL C20WE INDEX

This page is intentionally blank.

5/23/2017 www.cincinnati-test.com

Connection Type & Max Pressure Rating

Sentinel C20WE Technical Specifications

Outside Physical Dimensions

Wall mount model (W x H x D): 229 x 165 x 184 (mm) 9 x 6.5 x 7.25 (inches)

Electrical Specifications

Supply power: 100-240 VAC 50-60 Hz auto sensing/switching

Input power fuse: 3 Amp 250VAC, slow, 5X20MM, glass I/O driver fuse: 1 Amp 250VAC, fast, 5X20MM, glass

Board fuse: 3.125 Amp 250VAC, fast, radial leads, plastic can, vertical plug in fuse

Output current limit for each output: 0.5 amp max

Output current limit for all outputs combined: 1 amp max Instrument may operate at ± 10% of nominal voltage

Environmental Factors

Operating temperature Range: 5°C to 40° C (41°F to 104°F) Maximum humidity 90% relative humidity, non-condensing Maximum operating altitude 2,500 meters (8,200 feet) Indoor use only, IP20

Inlet Ports & Connection Type

Hi Press 1/4-18 FNPT or 1/4-19 BSPT fitting 0 to 500 psi (3450 kPa)

Air Cleanliness Specifications

Max Particulate Size: 0.3 micron

Max Dew Point: -30°C Max Oil: 0.1mg/m3

Recommended Filter Sets (available separately)

Small filter (includes 5.0 micron and 0.3 micron filters) for parts less than 300 ml Medium filter (includes 5.0 micron and 0.3 micron filters) for parts from 300 ml to 13,000 ml Large filter (includes 5.0 micron and 0.3 micron filters) for parts larger than 13,000 ml

Contact Cincinnati Test Systems Customer Service Department

By phone 513-202-5108 or by email service@cincinnati-test.com 8am-5pm eastern US

For after-hours, 24/7 emergency phone support, call 513-202-5174

5/23/2017 www.cincinnati-test.com

^{*} See label on instrument enclosure to determine whether port is for pressure or vacuum